Normalized defining polynomial
\( x^{22} - 7 x^{20} - 305 x^{18} + 1628 x^{16} + 16707 x^{14} - 32324 x^{12} - 356150 x^{10} - 370911 x^{8} + 918618 x^{6} + 1408022 x^{4} + 86679 x^{2} + 729 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-4129233136056857981979443884256982828952059904=-\,2^{22}\cdot 74843^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $118.43$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 74843$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{3} a^{19} - \frac{1}{3} a^{17} + \frac{1}{3} a^{15} - \frac{1}{3} a^{13} + \frac{1}{3} a^{9} + \frac{1}{3} a^{7} - \frac{1}{3} a$, $\frac{1}{44306988830059033861312669829073} a^{20} - \frac{14744472096397398257139601913251}{44306988830059033861312669829073} a^{18} + \frac{13911907170372215591103147890587}{44306988830059033861312669829073} a^{16} - \frac{14890788079029193239764527949569}{44306988830059033861312669829073} a^{14} - \frac{5716535564238799338202347214340}{14768996276686344620437556609691} a^{12} - \frac{18707208148785762435802560795851}{44306988830059033861312669829073} a^{10} + \frac{19694610076311752556089491452907}{44306988830059033861312669829073} a^{8} + \frac{1212680401854059882013032061293}{14768996276686344620437556609691} a^{6} - \frac{1208891816913973577304133609663}{14768996276686344620437556609691} a^{4} + \frac{731902955529038330173252282541}{44306988830059033861312669829073} a^{2} - \frac{2030216776707342988694065536527}{4922998758895448206812518869897}$, $\frac{1}{398762899470531304751814028461657} a^{21} + \frac{29562516733661635604173067915822}{398762899470531304751814028461657} a^{19} + \frac{13911907170372215591103147890587}{398762899470531304751814028461657} a^{17} - \frac{147811754569206294823702537436788}{398762899470531304751814028461657} a^{15} + \frac{53359449542506579143547879224424}{132920966490177101583938009487219} a^{13} + \frac{69906769511332305286822778862295}{398762899470531304751814028461657} a^{11} - \frac{24612378753747281305223178376166}{398762899470531304751814028461657} a^{9} - \frac{43094308428204973979299637767780}{132920966490177101583938009487219} a^{7} + \frac{57867093289831404904446092829101}{132920966490177101583938009487219} a^{5} - \frac{176496052364707097115077427033751}{398762899470531304751814028461657} a^{3} - \frac{16799213053393687609131622146218}{44306988830059033861312669829073} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 726368944674000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1351680 |
| The 112 conjugacy class representatives for t22n42 are not computed |
| Character table for t22n42 is not computed |
Intermediate fields
| 11.11.31376518243389673201.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | $22$ | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | $22$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 74843 | Data not computed | ||||||