Normalized defining polynomial
\( x^{22} - 55 x^{20} - 110 x^{19} + 1265 x^{18} + 5390 x^{17} - 12155 x^{16} - 108680 x^{15} - 54615 x^{14} + 1156650 x^{13} + 2584725 x^{12} - 6092700 x^{11} - 26435475 x^{10} + 3812050 x^{9} + 118802475 x^{8} + 110680350 x^{7} - 162157050 x^{6} - 354485450 x^{5} - 248457000 x^{4} - 122510850 x^{3} - 86390975 x^{2} - 35201100 x - 4085775 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-33342566148849566152016281600000000000000000000=-\,2^{32}\cdot 5^{20}\cdot 11^{22}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $130.22$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{5} a^{11}$, $\frac{1}{5} a^{12}$, $\frac{1}{5} a^{13}$, $\frac{1}{5} a^{14}$, $\frac{1}{5} a^{15}$, $\frac{1}{5} a^{16}$, $\frac{1}{5} a^{17}$, $\frac{1}{115} a^{18} + \frac{11}{115} a^{17} - \frac{2}{115} a^{16} - \frac{11}{115} a^{15} + \frac{1}{23} a^{14} + \frac{1}{23} a^{13} - \frac{9}{115} a^{12} + \frac{2}{115} a^{11} - \frac{6}{23} a^{10} - \frac{11}{23} a^{9} - \frac{6}{23} a^{8} - \frac{6}{23} a^{7} - \frac{4}{23} a^{6} - \frac{3}{23} a^{5} - \frac{1}{23} a^{4} + \frac{8}{23} a^{3} + \frac{7}{23} a^{2} - \frac{3}{23} a - \frac{11}{23}$, $\frac{1}{115} a^{19} - \frac{8}{115} a^{17} + \frac{11}{115} a^{16} + \frac{11}{115} a^{15} - \frac{4}{115} a^{14} + \frac{1}{23} a^{13} + \frac{9}{115} a^{12} - \frac{6}{115} a^{11} + \frac{9}{23} a^{10} - \frac{9}{23} a^{8} - \frac{7}{23} a^{7} - \frac{5}{23} a^{6} + \frac{9}{23} a^{5} - \frac{4}{23} a^{4} + \frac{11}{23} a^{3} - \frac{11}{23} a^{2} - \frac{1}{23} a + \frac{6}{23}$, $\frac{1}{115} a^{20} + \frac{7}{115} a^{17} - \frac{1}{23} a^{16} - \frac{1}{115} a^{14} + \frac{3}{115} a^{13} - \frac{9}{115} a^{12} - \frac{8}{115} a^{11} - \frac{2}{23} a^{10} - \frac{5}{23} a^{9} - \frac{9}{23} a^{8} - \frac{7}{23} a^{7} - \frac{5}{23} a^{5} + \frac{3}{23} a^{4} + \frac{7}{23} a^{3} + \frac{9}{23} a^{2} + \frac{5}{23} a + \frac{4}{23}$, $\frac{1}{383714698214742929162034059717575972220357749339644786591318298397750396310} a^{21} - \frac{417929038465262142999141970426988096894715199119113493772926091675453911}{127904899404914309720678019905858657406785916446548262197106099465916798770} a^{20} - \frac{715555050923636401471070477611479115387617503871130775880927238372659941}{191857349107371464581017029858787986110178874669822393295659149198875198155} a^{19} + \frac{593226736946978156059932894108109385098433369146925170389882066028923929}{191857349107371464581017029858787986110178874669822393295659149198875198155} a^{18} + \frac{22778646729621532585901133578529826661158803749833583221157769299693404253}{383714698214742929162034059717575972220357749339644786591318298397750396310} a^{17} + \frac{9603904587969376871169620700986447260976270780314840069620892435902207311}{383714698214742929162034059717575972220357749339644786591318298397750396310} a^{16} + \frac{362501340867013965417400474005700419002090766086470534579640816610350639}{191857349107371464581017029858787986110178874669822393295659149198875198155} a^{15} + \frac{18064179771995167529186668157498945591838271622775418983412700060033005001}{191857349107371464581017029858787986110178874669822393295659149198875198155} a^{14} + \frac{9786972365209525104822474386947097341238820913663941997840468564904385607}{127904899404914309720678019905858657406785916446548262197106099465916798770} a^{13} - \frac{69510719145514663567479531253067080778649072925531395845588153110664357}{127904899404914309720678019905858657406785916446548262197106099465916798770} a^{12} - \frac{1320792592858848053179036190079870947355618619221563175658279111791023068}{63952449702457154860339009952929328703392958223274131098553049732958399385} a^{11} + \frac{2377523298682546000140505889562532144429272869652313442542058338159825507}{12790489940491430972067801990585865740678591644654826219710609946591679877} a^{10} + \frac{7666986064554745586469195239798528343968594373098802012205847011905441835}{25580979880982861944135603981171731481357183289309652439421219893183359754} a^{9} - \frac{26430997685459548744830555009574321152819269645805818151333927155531898853}{76742939642948585832406811943515194444071549867928957318263659679550079262} a^{8} - \frac{5448581402766635632274444354202974064731654774163081717910835971525420402}{12790489940491430972067801990585865740678591644654826219710609946591679877} a^{7} + \frac{5803625858402593828545205833075807989198861591034980536357604996158223661}{12790489940491430972067801990585865740678591644654826219710609946591679877} a^{6} + \frac{6106938061036121046074936135108177931468397860891558744307725054122644112}{12790489940491430972067801990585865740678591644654826219710609946591679877} a^{5} + \frac{2857401645835108857844138241809317926015983021045165189624168121105578759}{38371469821474292916203405971757597222035774933964478659131829839775039631} a^{4} - \frac{170543132124263524422199727391537218706207222832547842093928440031781600}{12790489940491430972067801990585865740678591644654826219710609946591679877} a^{3} + \frac{795613490116397776288643027772268533270113517872779917406132132325793412}{12790489940491430972067801990585865740678591644654826219710609946591679877} a^{2} + \frac{24949094000657115421630215862721848310545535624453149879581963779165403293}{76742939642948585832406811943515194444071549867928957318263659679550079262} a + \frac{268948160161730113886102754197148107885283073433848394375502999072760065}{25580979880982861944135603981171731481357183289309652439421219893183359754}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4300530737910000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 225280 |
| The 88 conjugacy class representatives for t22n37 are not computed |
| Character table for t22n37 is not computed |
Intermediate fields
| 11.11.2853116706110000000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | $20{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | $20{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | $20{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.11.10.1 | $x^{11} - 5$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ |
| 5.11.10.1 | $x^{11} - 5$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ | |
| 11 | Data not computed | ||||||