Normalized defining polynomial
\( x^{22} + 11 x^{20} - 495 x^{18} - 7865 x^{16} - 24585 x^{14} + 129107 x^{12} + 801867 x^{10} + 572385 x^{8} - 2731740 x^{6} - 3375130 x^{4} - 45419 x^{2} + 1681 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-33342566148849566152016281600000000000000000000=-\,2^{32}\cdot 5^{20}\cdot 11^{22}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $130.22$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{17} - \frac{1}{4} a^{16} - \frac{1}{4} a^{15} - \frac{1}{4} a^{14} - \frac{1}{4} a^{12} - \frac{1}{2} a^{10} + \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} + \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{4} a^{18} - \frac{1}{4} a^{14} - \frac{1}{4} a^{13} - \frac{1}{4} a^{12} - \frac{1}{2} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{2} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{4} a^{19} - \frac{1}{4} a^{15} - \frac{1}{4} a^{14} - \frac{1}{4} a^{13} - \frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{2} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} + \frac{1}{4} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{594181924298956433068933354529156} a^{20} - \frac{39076423884321776913068611883593}{594181924298956433068933354529156} a^{18} - \frac{54169420845327036125001597778709}{594181924298956433068933354529156} a^{16} - \frac{1}{4} a^{15} + \frac{654972824769768858239365733215}{4434193464917585321409950406934} a^{14} - \frac{1}{4} a^{13} - \frac{11383166096034830689946118251419}{148545481074739108267233338632289} a^{12} - \frac{1}{2} a^{11} - \frac{44765710722112941977764852752111}{148545481074739108267233338632289} a^{10} + \frac{160914393718698520187646015972463}{594181924298956433068933354529156} a^{8} - \frac{1}{4} a^{7} - \frac{133321963178105262952528379205669}{297090962149478216534466677264578} a^{6} - \frac{14607020643685308119575090259928}{148545481074739108267233338632289} a^{4} - \frac{246069271259055297787011937856033}{594181924298956433068933354529156} a^{2} + \frac{1}{4} a + \frac{212307159598274023157230067411767}{594181924298956433068933354529156}$, $\frac{1}{24361458896257213755826267535695396} a^{21} - \frac{1821622196781191076119868675471061}{24361458896257213755826267535695396} a^{19} + \frac{1431285389902064046547331788544181}{24361458896257213755826267535695396} a^{17} - \frac{1}{4} a^{16} - \frac{9649448883679682544052705548994}{90900966030810499088903983342147} a^{15} - \frac{1}{4} a^{14} + \frac{137162314978704277577287220380870}{6090364724064303438956566883923849} a^{13} + \frac{252325251427365274556701824512467}{6090364724064303438956566883923849} a^{11} - \frac{6077995811420344027036154206583675}{24361458896257213755826267535695396} a^{9} - \frac{1}{4} a^{8} - \frac{133321963178105262952528379205669}{12180729448128606877913133767847698} a^{7} - \frac{1797152793540554607326375153847396}{6090364724064303438956566883923849} a^{5} - \frac{1}{2} a^{4} + \frac{8963750555374769414781455057345885}{24361458896257213755826267535695396} a^{3} - \frac{1}{4} a^{2} + \frac{8530854099783664086122297030819951}{24361458896257213755826267535695396} a - \frac{1}{2}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2018919861370000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 225280 |
| The 88 conjugacy class representatives for t22n37 are not computed |
| Character table for t22n37 is not computed |
Intermediate fields
| 11.11.2853116706110000000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | $20{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.11.10.1 | $x^{11} - 5$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ |
| 5.11.10.1 | $x^{11} - 5$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ | |
| 11 | Data not computed | ||||||