Normalized defining polynomial
\( x^{22} - 11 x^{21} + 73 x^{20} - 345 x^{19} - 4261 x^{18} + 45987 x^{17} - 307032 x^{16} + 1383522 x^{15} + 3961947 x^{14} - 48148705 x^{13} + 366194477 x^{12} - 1522409545 x^{11} + 1221051993 x^{10} + 6576607873 x^{9} - 104670123606 x^{8} + 364667664168 x^{7} - 921763556307 x^{6} + 1531016892369 x^{5} + 1216236277569 x^{4} - 4579083727977 x^{3} + 13843027641789 x^{2} - 11356029443979 x + 7476951174594 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-31549754154938736139605034462596274469412770924031278962771396260567384323209653421425695172275073152188416=-\,2^{48}\cdot 3^{20}\cdot 79\cdot 337^{8}\cdot 25537\cdot 310501^{8}\cdot 1108640890417\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $69{,}320.78$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 79, 337, 25537, 310501, 1108640890417$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{17} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{19} - \frac{1}{2} a^{17} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{57887320607168480035725746532474501690526662399435613406516} a^{20} - \frac{5}{28943660303584240017862873266237250845263331199717806703258} a^{19} - \frac{737610584223940751356102048530880609070892994189179622805}{14471830151792120008931436633118625422631665599858903351629} a^{18} + \frac{26553981032061867048819673747111701926552147790810466421265}{57887320607168480035725746532474501690526662399435613406516} a^{17} - \frac{586860724951479526293649518167839847781819036475741033102}{1315620922890192728084676057556238674784696872714445759239} a^{16} + \frac{2473995676591125099716396130300640312759563594284891320221}{14471830151792120008931436633118625422631665599858903351629} a^{15} - \frac{201626948634834958040240051859366525231469762495376591742}{14471830151792120008931436633118625422631665599858903351629} a^{14} - \frac{71777298086336739403032951341673156430548613433947102415}{28943660303584240017862873266237250845263331199717806703258} a^{13} + \frac{24941956648467998252648493963976767457995250771258429199949}{57887320607168480035725746532474501690526662399435613406516} a^{12} - \frac{12841687910111895951037183097197048929683384075161616468737}{28943660303584240017862873266237250845263331199717806703258} a^{11} + \frac{4481593734962046273720394404725615723404558890057092463730}{14471830151792120008931436633118625422631665599858903351629} a^{10} - \frac{21077005455778262574412527945028274541246440252693679907575}{57887320607168480035725746532474501690526662399435613406516} a^{9} + \frac{2855866731678020413518640081046872437236270566910626353755}{28943660303584240017862873266237250845263331199717806703258} a^{8} - \frac{5489624315612776094710219373798349577215325272985413362438}{14471830151792120008931436633118625422631665599858903351629} a^{7} - \frac{1950857656348966698424457832454131078100859731309054393911}{14471830151792120008931436633118625422631665599858903351629} a^{6} - \frac{6358768140936813493221859227266859554484850275531464883665}{14471830151792120008931436633118625422631665599858903351629} a^{5} - \frac{24533229084395396778479410071165303866873244623983328928459}{57887320607168480035725746532474501690526662399435613406516} a^{4} - \frac{2397657681228293508054861432582376973667621265965112078817}{28943660303584240017862873266237250845263331199717806703258} a^{3} - \frac{5559281323579400765961827739301391134290668479882919079619}{14471830151792120008931436633118625422631665599858903351629} a^{2} - \frac{17559241910196809740042606207571598041070657975824712948371}{57887320607168480035725746532474501690526662399435613406516} a + \frac{583033358529455841748358103828492840585491229564348425843}{2631241845780385456169352115112477349569393745428891518478}$, $\frac{1}{173661961821505440107177239597423505071579987198306840219548} a^{21} + \frac{12996608983344238506219232536056864204489879611480544105969}{86830980910752720053588619798711752535789993599153420109774} a^{19} + \frac{25993217966688477012438465072113728408979759222961088212323}{173661961821505440107177239597423505071579987198306840219548} a^{18} - \frac{8286444102181471474558762331773407081585311949001001379403}{28943660303584240017862873266237250845263331199717806703258} a^{17} - \frac{1397787820301047585619768111895747084237956006203669638161}{14471830151792120008931436633118625422631665599858903351629} a^{16} - \frac{572035170851513454171836019642692111076691836946156771043}{1315620922890192728084676057556238674784696872714445759239} a^{15} - \frac{11015992191455758639356902418255418168774425021019761880171}{28943660303584240017862873266237250845263331199717806703258} a^{14} - \frac{1041845755164461108216300351373672647307344966571397765299}{5262483691560770912338704230224954699138787490857783036956} a^{13} - \frac{177570267368584761783918470102827955489111591715486240092}{3946862768670578184254028172668716024354090618143337277717} a^{12} - \frac{550026683898485663648817749414814542169789811287565342379}{2631241845780385456169352115112477349569393745428891518478} a^{11} + \frac{13468442424782388285088881912810100168619259351000985125335}{173661961821505440107177239597423505071579987198306840219548} a^{10} - \frac{7849089818230286202477689922691373866602968548702176537173}{43415490455376360026794309899355876267894996799576710054887} a^{9} - \frac{172185479061054364728741078838867054959564789039126816524}{1315620922890192728084676057556238674784696872714445759239} a^{8} + \frac{346739931563917463399698320678958280090849979424141796075}{14471830151792120008931436633118625422631665599858903351629} a^{7} - \frac{3798504850878120156178333639563181637620593996254368490382}{14471830151792120008931436633118625422631665599858903351629} a^{6} - \frac{1434384008884667162559114940361869069216988062045438504515}{5262483691560770912338704230224954699138787490857783036956} a^{5} + \frac{3275749735785987114810409090462892986380468602117879465863}{14471830151792120008931436633118625422631665599858903351629} a^{4} + \frac{12421337099839621144061637787055525035966926126625852603579}{28943660303584240017862873266237250845263331199717806703258} a^{3} + \frac{623104481178343023704549806560848914990078291706629824127}{5262483691560770912338704230224954699138787490857783036956} a^{2} + \frac{908023050598780935434587983827863929479517874206281342032}{14471830151792120008931436633118625422631665599858903351629} a + \frac{533181956585695493552371487195408509380919758369098789992}{1315620922890192728084676057556238674784696872714445759239}$
Class group and class number
Not computed
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 16220160 |
| The 104 conjugacy class representatives for t22n44 are not computed |
| Character table for t22n44 is not computed |
Intermediate fields
| 11.11.118769262421915560193703211428553337469927424.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $16{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/13.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | $16{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}$ | $16{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | $16{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.9.10.1 | $x^{9} + 3 x^{2} + 3$ | $9$ | $1$ | $10$ | $C_3^2:Q_8$ | $[5/4, 5/4]_{4}^{2}$ | |
| 3.9.10.1 | $x^{9} + 3 x^{2} + 3$ | $9$ | $1$ | $10$ | $C_3^2:Q_8$ | $[5/4, 5/4]_{4}^{2}$ | |
| $79$ | $\Q_{79}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{79}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{79}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{79}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 79.2.1.2 | $x^{2} + 158$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 79.4.0.1 | $x^{4} - x + 3$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 79.4.0.1 | $x^{4} - x + 3$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 79.4.0.1 | $x^{4} - x + 3$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 79.4.0.1 | $x^{4} - x + 3$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 337 | Data not computed | ||||||
| 25537 | Data not computed | ||||||
| 310501 | Data not computed | ||||||
| 1108640890417 | Data not computed | ||||||