Normalized defining polynomial
\( x^{22} - 33 x^{20} - 66 x^{19} - 165 x^{17} - 1584 x^{16} - 5379 x^{15} + 11517 x^{14} + 66462 x^{13} + 1452 x^{12} - 124158 x^{11} + 531795 x^{10} + 1346697 x^{9} - 72006 x^{8} - 136224 x^{7} + 4245747 x^{6} + 2948682 x^{5} - 3930531 x^{4} - 687159 x^{3} + 4962870 x^{2} + 314622 x - 2099481 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-22085756220567549162579756126980406366726963=-\,3^{21}\cdot 11^{32}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $93.37$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{16} - \frac{1}{2} a^{15} - \frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{19} - \frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{20} - \frac{1}{2} a^{14} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{3041993956511981371825317651324164124681284450646395438980881427579759650534698} a^{21} + \frac{225860808883348900903597828246387666335736277773173282939486139338143340878001}{3041993956511981371825317651324164124681284450646395438980881427579759650534698} a^{20} - \frac{44484420362153639813287337044088829867801097289787262897514611852493862431581}{1520996978255990685912658825662082062340642225323197719490440713789879825267349} a^{19} - \frac{21217543454040267768504526654153173291759257155986906589648192322443933831225}{3041993956511981371825317651324164124681284450646395438980881427579759650534698} a^{18} - \frac{276262188443103724116667283778159609468391729712773678933178100911300676969898}{1520996978255990685912658825662082062340642225323197719490440713789879825267349} a^{17} + \frac{642069938729917202920241886783112899649544449460732770539493152372656558568847}{1520996978255990685912658825662082062340642225323197719490440713789879825267349} a^{16} - \frac{978293411161868020107890736326576069526848765063076042899561177270916474019819}{3041993956511981371825317651324164124681284450646395438980881427579759650534698} a^{15} - \frac{1045980554364092460388965180771133290117058160856421448646612098152503237487239}{3041993956511981371825317651324164124681284450646395438980881427579759650534698} a^{14} + \frac{1405149479478903676854881127493166131899546133324038035874162256643464202191697}{3041993956511981371825317651324164124681284450646395438980881427579759650534698} a^{13} + \frac{883424029476148020648881146586246757705450846439984577288628396772632894959737}{3041993956511981371825317651324164124681284450646395438980881427579759650534698} a^{12} - \frac{1100059884270277743184555982518408822153546907831935988944689525907703507637321}{3041993956511981371825317651324164124681284450646395438980881427579759650534698} a^{11} + \frac{10763485117618673094056397353646942511404459228343025483423389878230918326382}{1520996978255990685912658825662082062340642225323197719490440713789879825267349} a^{10} - \frac{533526358495700265294894348745999028145555987984150567849658063310046003367285}{3041993956511981371825317651324164124681284450646395438980881427579759650534698} a^{9} - \frac{275998969402145630160158453051207120760546895340024804247599321193788002076940}{1520996978255990685912658825662082062340642225323197719490440713789879825267349} a^{8} - \frac{73664077841967663498140566919018628280007115238993862801874778425788418058563}{3041993956511981371825317651324164124681284450646395438980881427579759650534698} a^{7} - \frac{311116260847774240041490281361816896515518300044927065122519305966445198751243}{3041993956511981371825317651324164124681284450646395438980881427579759650534698} a^{6} - \frac{1130740386412210487669498419083460203561191171408836753865474051124824770849575}{3041993956511981371825317651324164124681284450646395438980881427579759650534698} a^{5} - \frac{108143460601056706647560861610564595212441399603968984808205469485244727069895}{3041993956511981371825317651324164124681284450646395438980881427579759650534698} a^{4} - \frac{553781660121755434599877240493724559498734792666104318576514594006880435740715}{3041993956511981371825317651324164124681284450646395438980881427579759650534698} a^{3} - \frac{57768941241121898224566362176586150438854173227727150219477228223676810226577}{1520996978255990685912658825662082062340642225323197719490440713789879825267349} a^{2} - \frac{245678025060238885580516085119053351007021086316405167242093382410786744578265}{3041993956511981371825317651324164124681284450646395438980881427579759650534698} a + \frac{443665629956168933134833352505328461839504514300194367449367004903195937682111}{3041993956511981371825317651324164124681284450646395438980881427579759650534698}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 97875809452100 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 112640 |
| The 80 conjugacy class representatives for t22n36 are not computed |
| Character table for t22n36 is not computed |
Intermediate fields
| 11.11.2713285598714072534889.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 11 | Data not computed | ||||||