Normalized defining polynomial
\( x^{22} - 2 x^{21} - 14 x^{20} + 31 x^{19} + 70 x^{18} - 232 x^{17} - 279 x^{16} + 727 x^{15} + 777 x^{14} - 691 x^{13} - 405 x^{12} + 301 x^{11} - 1802 x^{10} - 2957 x^{9} + 1747 x^{8} + 4390 x^{7} + 52 x^{6} - 990 x^{5} - 739 x^{4} - 86 x^{3} + 40 x^{2} + 61 x - 47 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-178176446876650757881387571453423=-\,23^{20}\cdot 47^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{2360091364371641515923809793275382128957} a^{21} - \frac{407226193778271876173578298839318273300}{2360091364371641515923809793275382128957} a^{20} + \frac{145013260375449883394330420355883584668}{2360091364371641515923809793275382128957} a^{19} + \frac{825630055414468892725428483016051748775}{2360091364371641515923809793275382128957} a^{18} + \frac{685420574193419488965821431530532634009}{2360091364371641515923809793275382128957} a^{17} + \frac{62636280584193781025826192940554293507}{2360091364371641515923809793275382128957} a^{16} - \frac{374002486456244043965740195958625699243}{2360091364371641515923809793275382128957} a^{15} - \frac{689551138080475473027896012470500204567}{2360091364371641515923809793275382128957} a^{14} + \frac{972108898385428541736612826957662120965}{2360091364371641515923809793275382128957} a^{13} + \frac{329065570418991763645066168529173184937}{2360091364371641515923809793275382128957} a^{12} + \frac{941225801298728204687741121541785042519}{2360091364371641515923809793275382128957} a^{11} - \frac{563382319456614610439079098711716880233}{2360091364371641515923809793275382128957} a^{10} + \frac{457550216022184365966309721494292193257}{2360091364371641515923809793275382128957} a^{9} - \frac{293253256359407985547450533028915435422}{2360091364371641515923809793275382128957} a^{8} + \frac{340995930693629326155191580537348420789}{2360091364371641515923809793275382128957} a^{7} - \frac{1172994484171519263514559702844943497206}{2360091364371641515923809793275382128957} a^{6} - \frac{805276399828988094011302833379280673930}{2360091364371641515923809793275382128957} a^{5} + \frac{622986655162945055027107234097090257971}{2360091364371641515923809793275382128957} a^{4} - \frac{775506262662066248169067926062042407323}{2360091364371641515923809793275382128957} a^{3} + \frac{94159347250238796055606340917056426495}{2360091364371641515923809793275382128957} a^{2} - \frac{305364853720098224803666422383601642577}{2360091364371641515923809793275382128957} a + \frac{22939908443252727680498655440150050219}{50214709880247691828166165814369832531}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 44250455.5687 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 22528 |
| The 208 conjugacy class representatives for t22n28 are not computed |
| Character table for t22n28 is not computed |
Intermediate fields
| \(\Q(\zeta_{23})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ | $22$ | $22$ | ${\href{/LocalNumberField/17.11.0.1}{11} }^{2}$ | $22$ | R | $22$ | $22$ | ${\href{/LocalNumberField/37.11.0.1}{11} }^{2}$ | $22$ | $22$ | R | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.11.0.1}{11} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 23 | Data not computed | ||||||
| 47 | Data not computed | ||||||