Normalized defining polynomial
\( x^{22} + 26 x^{20} - 20 x^{18} - 3330 x^{16} - 12255 x^{14} + 78192 x^{12} + 447987 x^{10} + 277980 x^{8} - 1318755 x^{6} - 2129930 x^{4} - 884209 x^{2} + 8836 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-15646172003756569249283257910156250000000000=-\,2^{10}\cdot 3^{20}\cdot 5^{20}\cdot 11^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $91.91$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{10} a^{12} - \frac{2}{5} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} + \frac{1}{10} a^{2} - \frac{2}{5}$, $\frac{1}{10} a^{13} + \frac{1}{10} a^{11} - \frac{1}{2} a^{9} - \frac{2}{5} a^{3} + \frac{1}{10} a$, $\frac{1}{10} a^{14} - \frac{1}{10} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} + \frac{1}{10} a^{4} + \frac{2}{5}$, $\frac{1}{10} a^{15} - \frac{1}{10} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} + \frac{1}{10} a^{5} + \frac{2}{5} a$, $\frac{1}{20} a^{16} - \frac{1}{20} a^{14} - \frac{1}{20} a^{13} - \frac{1}{20} a^{11} - \frac{2}{5} a^{10} - \frac{1}{4} a^{9} + \frac{1}{4} a^{8} - \frac{9}{20} a^{6} + \frac{1}{5} a^{4} - \frac{3}{10} a^{3} + \frac{1}{4} a^{2} - \frac{1}{20} a + \frac{1}{10}$, $\frac{1}{20} a^{17} - \frac{1}{20} a^{15} - \frac{1}{20} a^{14} - \frac{1}{20} a^{12} + \frac{1}{10} a^{11} - \frac{1}{4} a^{10} + \frac{1}{4} a^{9} + \frac{1}{20} a^{7} - \frac{3}{10} a^{5} - \frac{3}{10} a^{4} - \frac{1}{4} a^{3} - \frac{1}{20} a^{2} - \frac{2}{5} a$, $\frac{1}{20} a^{18} - \frac{1}{20} a^{15} - \frac{1}{20} a^{14} - \frac{1}{5} a^{11} + \frac{1}{4} a^{10} + \frac{1}{4} a^{9} - \frac{1}{5} a^{8} - \frac{1}{4} a^{6} - \frac{3}{10} a^{5} + \frac{9}{20} a^{4} + \frac{1}{4} a^{3} - \frac{1}{4} a^{2} + \frac{1}{20} a - \frac{1}{2}$, $\frac{1}{20} a^{19} - \frac{1}{20} a^{15} - \frac{1}{20} a^{14} - \frac{1}{20} a^{13} + \frac{1}{5} a^{11} + \frac{1}{20} a^{10} - \frac{9}{20} a^{9} + \frac{1}{4} a^{8} - \frac{1}{4} a^{7} + \frac{1}{4} a^{6} + \frac{9}{20} a^{5} + \frac{9}{20} a^{4} + \frac{9}{20} a^{3} - \frac{1}{2} a^{2} + \frac{9}{20} a + \frac{3}{10}$, $\frac{1}{67167999138195962426982382060} a^{20} + \frac{171071706577225796572171537}{67167999138195962426982382060} a^{18} - \frac{110826451130019621098955445}{6716799913819596242698238206} a^{16} - \frac{731198628653500516352298223}{67167999138195962426982382060} a^{14} - \frac{1}{20} a^{13} - \frac{485475802493570474235351304}{16791999784548990606745595515} a^{12} + \frac{1}{5} a^{11} - \frac{14532722946907109076474872739}{33583999569097981213491191030} a^{10} - \frac{1}{4} a^{9} + \frac{3202117572929018313518658068}{16791999784548990606745595515} a^{8} + \frac{1}{4} a^{7} + \frac{6357607295997221149074016523}{13433599827639192485396476412} a^{6} - \frac{1}{4} a^{5} + \frac{7695112829994901825506509813}{16791999784548990606745595515} a^{4} - \frac{1}{20} a^{3} - \frac{33543583848412430765573010361}{67167999138195962426982382060} a^{2} + \frac{1}{5} a - \frac{3385134480679977885810526871}{16791999784548990606745595515}$, $\frac{1}{3156895959495210234068171956820} a^{21} + \frac{74055870758592784466252791803}{3156895959495210234068171956820} a^{19} - \frac{64917863692586360516622817407}{3156895959495210234068171956820} a^{17} - \frac{2044799292781649318850708663}{1578447979747605117034085978410} a^{15} + \frac{6231324111326025768462886902}{789223989873802558517042989205} a^{13} - \frac{1}{20} a^{12} + \frac{91806437255385490041561577169}{789223989873802558517042989205} a^{11} + \frac{1}{5} a^{10} - \frac{971202717082854776301217264907}{3156895959495210234068171956820} a^{9} - \frac{1}{4} a^{8} - \frac{687690772732609653549955410771}{1578447979747605117034085978410} a^{7} + \frac{1}{4} a^{6} + \frac{744163016309415995983771864977}{1578447979747605117034085978410} a^{5} - \frac{1}{4} a^{4} - \frac{633038184017154170650349860581}{1578447979747605117034085978410} a^{3} - \frac{1}{20} a^{2} - \frac{29559266525560259420764529660}{157844797974760511703408597841} a + \frac{1}{5}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 187763627752000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 112640 |
| The 80 conjugacy class representatives for t22n36 are not computed |
| Character table for t22n36 is not computed |
Intermediate fields
| 11.11.123610132462587890625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | $22$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.10.10.8 | $x^{10} + x^{8} - 2 x^{6} - 2 x^{4} + x^{2} + 33$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2, 2]^{5}$ | |
| 3 | Data not computed | ||||||
| $5$ | 5.11.10.1 | $x^{11} - 5$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ |
| 5.11.10.1 | $x^{11} - 5$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ | |
| $11$ | $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |