Normalized defining polynomial
\( x^{22} - 19 x^{20} - 170 x^{18} + 3015 x^{16} + 10980 x^{14} - 127398 x^{12} - 271758 x^{10} + 1040880 x^{8} + 1659690 x^{6} + 598255 x^{4} + 77051 x^{2} + 3136 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-15646172003756569249283257910156250000000000=-\,2^{10}\cdot 3^{20}\cdot 5^{20}\cdot 11^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $91.91$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{165} a^{12} - \frac{3}{55} a^{10} + \frac{2}{11} a^{8} - \frac{8}{33} a^{6} + \frac{27}{55} a^{2} + \frac{1}{165}$, $\frac{1}{165} a^{13} - \frac{3}{55} a^{11} + \frac{2}{11} a^{9} - \frac{8}{33} a^{7} + \frac{27}{55} a^{3} + \frac{1}{165} a$, $\frac{1}{165} a^{14} - \frac{17}{55} a^{10} + \frac{13}{33} a^{8} - \frac{2}{11} a^{6} + \frac{27}{55} a^{4} + \frac{14}{33} a^{2} + \frac{3}{55}$, $\frac{1}{165} a^{15} - \frac{17}{55} a^{11} + \frac{13}{33} a^{9} - \frac{2}{11} a^{7} + \frac{27}{55} a^{5} + \frac{14}{33} a^{3} + \frac{3}{55} a$, $\frac{1}{330} a^{16} - \frac{1}{330} a^{15} - \frac{1}{330} a^{14} - \frac{19}{55} a^{11} - \frac{13}{330} a^{10} + \frac{10}{33} a^{9} + \frac{23}{66} a^{8} - \frac{9}{22} a^{7} + \frac{17}{110} a^{6} - \frac{27}{110} a^{5} - \frac{1}{30} a^{4} - \frac{7}{33} a^{3} - \frac{1}{6} a^{2} - \frac{3}{110} a + \frac{7}{55}$, $\frac{1}{330} a^{17} - \frac{1}{330} a^{14} + \frac{101}{330} a^{11} + \frac{17}{110} a^{10} + \frac{1}{22} a^{9} + \frac{10}{33} a^{8} - \frac{24}{55} a^{7} + \frac{1}{11} a^{6} + \frac{7}{33} a^{5} - \frac{27}{110} a^{4} + \frac{1}{22} a^{3} - \frac{7}{33} a^{2} + \frac{17}{110} a + \frac{26}{55}$, $\frac{1}{3630} a^{18} - \frac{2}{1815} a^{16} - \frac{1}{330} a^{15} + \frac{4}{1815} a^{14} + \frac{1}{726} a^{12} + \frac{17}{110} a^{11} - \frac{593}{3630} a^{10} + \frac{10}{33} a^{9} - \frac{457}{1815} a^{8} + \frac{1}{11} a^{7} + \frac{13}{165} a^{6} - \frac{27}{110} a^{5} - \frac{607}{3630} a^{4} - \frac{7}{33} a^{3} + \frac{139}{726} a^{2} + \frac{26}{55} a + \frac{292}{605}$, $\frac{1}{3630} a^{19} - \frac{2}{1815} a^{17} - \frac{1}{1210} a^{15} - \frac{1}{330} a^{14} + \frac{1}{726} a^{13} - \frac{1}{330} a^{12} + \frac{1783}{3630} a^{11} - \frac{7}{22} a^{10} + \frac{31}{605} a^{9} - \frac{19}{66} a^{8} - \frac{109}{330} a^{7} + \frac{7}{33} a^{6} - \frac{749}{1815} a^{5} - \frac{27}{110} a^{4} - \frac{5}{242} a^{3} - \frac{151}{330} a^{2} + \frac{551}{1210} a - \frac{1}{33}$, $\frac{1}{17573290275118628298270} a^{20} - \frac{993454465846163149}{8786645137559314149135} a^{18} + \frac{4204600955909884791}{5857763425039542766090} a^{16} - \frac{1}{330} a^{15} - \frac{1525052459834295199}{17573290275118628298270} a^{14} - \frac{1}{330} a^{13} - \frac{5776888595896559151}{5857763425039542766090} a^{12} - \frac{7}{22} a^{11} + \frac{941922640989538666954}{2928881712519771383045} a^{10} - \frac{19}{66} a^{9} - \frac{1482055698700679067863}{17573290275118628298270} a^{8} + \frac{7}{33} a^{7} + \frac{980708320213089085218}{2928881712519771383045} a^{6} - \frac{27}{110} a^{5} + \frac{301366714066990187667}{5857763425039542766090} a^{4} - \frac{151}{330} a^{3} + \frac{1937075440998064693669}{5857763425039542766090} a^{2} - \frac{1}{33} a - \frac{1040883411527500969621}{8786645137559314149135}$, $\frac{1}{984104255406643184703120} a^{21} - \frac{84286064490099125491}{984104255406643184703120} a^{19} - \frac{2998483164320642301}{2982134107292858135464} a^{17} - \frac{468483941250101074203}{328034751802214394901040} a^{15} + \frac{16922676477837984451}{7455335268232145338660} a^{13} - \frac{75426852590414417643021}{164017375901107197450520} a^{11} - \frac{1}{2} a^{10} - \frac{35592882886519982317661}{164017375901107197450520} a^{9} - \frac{3790462247128900395149}{8200868795055359872526} a^{7} - \frac{1}{2} a^{6} + \frac{32670952619598064127891}{164017375901107197450520} a^{5} + \frac{60860147478660600582601}{140586322200949026386160} a^{3} + \frac{45385481426955507830603}{984104255406643184703120} a - \frac{1}{2}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 41702856594400 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 112640 |
| The 80 conjugacy class representatives for t22n36 are not computed |
| Character table for t22n36 is not computed |
Intermediate fields
| 11.11.123610132462587890625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.10.10.14 | $x^{10} + 5 x^{8} - 50 x^{6} - 58 x^{4} + 49 x^{2} + 21$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2, 2]^{5}$ | |
| 3 | Data not computed | ||||||
| $5$ | 5.11.10.1 | $x^{11} - 5$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ |
| 5.11.10.1 | $x^{11} - 5$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ | |
| $11$ | 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |