\\ Pari/GP code for working with number field 22.8.14799420881562079578038490499.1 \\ Some of these functions may take a long time to execute (this depends on the field). \\ Define the number field: K = bnfinit(y^22 - 11*y^21 + 44*y^20 - 55*y^19 - 112*y^18 + 381*y^17 - 87*y^16 - 834*y^15 + 674*y^14 + 1020*y^13 - 1213*y^12 - 834*y^11 + 1220*y^10 + 511*y^9 - 776*y^8 - 247*y^7 + 323*y^6 + 85*y^5 - 89*y^4 - 18*y^3 + 16*y^2 + y - 1, 1) \\ Defining polynomial: K.pol \\ Degree over Q: poldegree(K.pol) \\ Signature: K.sign \\ Discriminant: K.disc \\ Ramified primes: factor(abs(K.disc))[,1]~ \\ Integral basis: K.zk \\ Class group: K.clgp \\ Unit rank: K.fu \\ Generator for roots of unity: K.tu[2] \\ Fundamental units: K.fu \\ Regulator: K.reg \\ Analytic class number formula: # self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^22 - 11*x^21 + 44*x^20 - 55*x^19 - 112*x^18 + 381*x^17 - 87*x^16 - 834*x^15 + 674*x^14 + 1020*x^13 - 1213*x^12 - 834*x^11 + 1220*x^10 + 511*x^9 - 776*x^8 - 247*x^7 + 323*x^6 + 85*x^5 - 89*x^4 - 18*x^3 + 16*x^2 + x - 1, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))] \\ Intermediate fields: L = nfsubfields(K); L[2..length(b)] \\ Galois group: polgalois(K.pol) \\ Frobenius cycle types: \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])