Normalized defining polynomial
\( x^{22} - 9 x^{21} + 19 x^{20} + 110 x^{19} - 682 x^{18} + 489 x^{17} + 6037 x^{16} - 18540 x^{15} + 5911 x^{14} + 76660 x^{13} - 211000 x^{12} + 254168 x^{11} - 7956 x^{10} - 517531 x^{9} + 1351100 x^{8} - 2847860 x^{7} + 4722099 x^{6} - 5902951 x^{5} + 3241118 x^{4} + 3222860 x^{3} - 7591065 x^{2} + 6870510 x - 2410857 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(95495132016543203413964761918289025880897=97\cdot 74843^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $72.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $97, 74843$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{12} + \frac{1}{3} a^{11} + \frac{1}{3} a^{10} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{3} a^{15} + \frac{1}{3} a^{13} + \frac{1}{3} a^{12} + \frac{1}{3} a^{11} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{16} + \frac{1}{3} a^{13} - \frac{1}{3} a^{11} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{17} + \frac{1}{3} a^{12} - \frac{1}{3} a^{11} + \frac{1}{3} a^{10} - \frac{1}{3} a^{9} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{3} a^{18} + \frac{1}{3} a^{13} - \frac{1}{3} a^{12} + \frac{1}{3} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{9} a^{19} + \frac{1}{9} a^{18} + \frac{1}{9} a^{17} - \frac{1}{9} a^{16} + \frac{1}{9} a^{14} + \frac{2}{9} a^{13} + \frac{4}{9} a^{12} - \frac{1}{3} a^{11} - \frac{4}{9} a^{9} + \frac{1}{9} a^{8} + \frac{2}{9} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{2}{9} a^{4} + \frac{1}{9} a^{3} + \frac{2}{9} a^{2} - \frac{1}{3} a$, $\frac{1}{9} a^{20} + \frac{1}{9} a^{17} + \frac{1}{9} a^{16} + \frac{1}{9} a^{15} + \frac{1}{9} a^{14} + \frac{2}{9} a^{13} - \frac{4}{9} a^{12} - \frac{1}{9} a^{10} + \frac{2}{9} a^{9} + \frac{1}{9} a^{8} - \frac{2}{9} a^{7} + \frac{1}{3} a^{6} + \frac{4}{9} a^{5} + \frac{1}{3} a^{4} + \frac{4}{9} a^{3} + \frac{4}{9} a^{2} - \frac{1}{3} a$, $\frac{1}{22000355865496776396904560460441368890441140291008137611701362054686553823} a^{21} - \frac{432415104259933961766603469345973667095012323887262762275098609430177700}{22000355865496776396904560460441368890441140291008137611701362054686553823} a^{20} - \frac{183414666039466971041077327807653894929230777289938345588188804270182206}{22000355865496776396904560460441368890441140291008137611701362054686553823} a^{19} - \frac{52342649953435663969442035423019358180058545819713161766203614085961414}{814827995018399125811280017053384032979301492259560652285235631655057549} a^{18} + \frac{306972538654864410008084722075427679760608427804433239734413114136803348}{22000355865496776396904560460441368890441140291008137611701362054686553823} a^{17} + \frac{215009652338627522952899143835188391026730061885894823812966188239914076}{22000355865496776396904560460441368890441140291008137611701362054686553823} a^{16} + \frac{274709783252570869149551491207660213248612856871325854422842846511579865}{7333451955165592132301520153480456296813713430336045870567120684895517941} a^{15} - \frac{1036395520721487560883661188030967678980960817691856198388528975116375044}{7333451955165592132301520153480456296813713430336045870567120684895517941} a^{14} - \frac{10213919676984094662472281558854412440610372452828820435050520285909582698}{22000355865496776396904560460441368890441140291008137611701362054686553823} a^{13} - \frac{1115051155114773542302513903479958282935610186278522347290758866762173640}{7333451955165592132301520153480456296813713430336045870567120684895517941} a^{12} + \frac{226845264523400036769634182016914987144868183854481747521699069245572243}{468092677989293114827756605541305721073215750872513566206411958610352209} a^{11} - \frac{3627785073805459374694477739785982383665341658453058596683032284669455038}{7333451955165592132301520153480456296813713430336045870567120684895517941} a^{10} + \frac{2960215380363197159447025521591638188782487823236129984046809345443282308}{7333451955165592132301520153480456296813713430336045870567120684895517941} a^{9} - \frac{5870122139589016231698096647378660006782246021941210904840164488906518213}{22000355865496776396904560460441368890441140291008137611701362054686553823} a^{8} - \frac{646868870913691749367635294158150804611032406895776715093553977283422261}{2444483985055197377433840051160152098937904476778681956855706894965172647} a^{7} - \frac{5028780770108499805112873631064470558670326983862687921091326306257496719}{22000355865496776396904560460441368890441140291008137611701362054686553823} a^{6} + \frac{2356481898130190940364986972417163955742320070055669168760573571371990255}{22000355865496776396904560460441368890441140291008137611701362054686553823} a^{5} + \frac{808231508334526727401998355812787592230798376756463209345776965903387139}{2444483985055197377433840051160152098937904476778681956855706894965172647} a^{4} + \frac{6055538227165536410230759361638015816817288005029935476700350927043482436}{22000355865496776396904560460441368890441140291008137611701362054686553823} a^{3} - \frac{3413732246535015350391229536213006412571595901931054477830283010819395624}{7333451955165592132301520153480456296813713430336045870567120684895517941} a^{2} + \frac{11674053595351485460994236509426775422487566772446406223501566370741608}{2444483985055197377433840051160152098937904476778681956855706894965172647} a - \frac{228446438525138595176438530902080859680551233441442280027333306431095113}{814827995018399125811280017053384032979301492259560652285235631655057549}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2007542611980 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1351680 |
| The 112 conjugacy class representatives for t22n42 are not computed |
| Character table for t22n42 is not computed |
Intermediate fields
| 11.11.31376518243389673201.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | $22$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | $22$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 97 | Data not computed | ||||||
| 74843 | Data not computed | ||||||