Normalized defining polynomial
\( x^{22} - 11 x^{21} + 55 x^{20} - 132 x^{19} - 330 x^{18} + 3993 x^{17} - 14652 x^{16} + 20856 x^{15} + 50820 x^{14} - 250492 x^{13} + 258896 x^{12} + 755828 x^{11} - 2370456 x^{10} - 55044 x^{9} + 5932872 x^{8} - 2591160 x^{7} - 6508656 x^{6} + 4046856 x^{5} + 2760384 x^{4} - 1545984 x^{3} - 811008 x^{2} + 219648 x + 122880 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8436070000587514853066040247015770903225040896=2^{24}\cdot 3^{20}\cdot 11^{28}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $122.34$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7}$, $\frac{1}{12} a^{15} - \frac{1}{12} a^{14} - \frac{1}{12} a^{12} + \frac{1}{12} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{2} a^{6}$, $\frac{1}{12} a^{16} - \frac{1}{12} a^{14} - \frac{1}{12} a^{13} - \frac{1}{6} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6}$, $\frac{1}{24} a^{17} - \frac{1}{24} a^{16} - \frac{1}{24} a^{15} - \frac{1}{12} a^{13} + \frac{1}{24} a^{12} - \frac{1}{6} a^{11} - \frac{1}{4} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4}$, $\frac{1}{48} a^{18} - \frac{1}{48} a^{17} + \frac{1}{48} a^{16} - \frac{1}{24} a^{15} - \frac{1}{24} a^{14} + \frac{5}{48} a^{13} - \frac{1}{24} a^{12} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} + \frac{1}{4} a^{7} - \frac{1}{2} a^{6} + \frac{1}{4} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{576} a^{19} + \frac{1}{576} a^{18} - \frac{5}{576} a^{17} - \frac{1}{72} a^{16} - \frac{1}{288} a^{15} + \frac{1}{576} a^{14} + \frac{1}{36} a^{13} - \frac{1}{18} a^{12} + \frac{13}{144} a^{11} - \frac{3}{16} a^{10} + \frac{1}{6} a^{9} - \frac{5}{48} a^{8} + \frac{3}{8} a^{7} - \frac{19}{48} a^{6} - \frac{7}{24} a^{5} + \frac{11}{24} a^{4} + \frac{5}{12} a^{3} + \frac{1}{8} a^{2} + \frac{1}{6} a - \frac{1}{3}$, $\frac{1}{2304} a^{20} + \frac{1}{2304} a^{19} - \frac{5}{2304} a^{18} - \frac{1}{288} a^{17} - \frac{1}{1152} a^{16} + \frac{1}{2304} a^{15} + \frac{5}{72} a^{14} + \frac{7}{144} a^{13} + \frac{49}{576} a^{12} + \frac{5}{64} a^{11} + \frac{1}{24} a^{10} - \frac{41}{192} a^{9} + \frac{3}{32} a^{8} - \frac{43}{192} a^{7} + \frac{41}{96} a^{6} - \frac{37}{96} a^{5} - \frac{7}{48} a^{4} - \frac{7}{32} a^{3} + \frac{7}{24} a^{2} - \frac{1}{12} a$, $\frac{1}{8830198109564222618741274995501283864344937630927257918976} a^{21} + \frac{1262195070188571277300634496180201181440870884314258691}{8830198109564222618741274995501283864344937630927257918976} a^{20} + \frac{40491096423957300530549885751072614695466495628736165}{981133123284913624304586110611253762704993070103028657664} a^{19} + \frac{8232161427280579408341336337568486829706070208606414133}{1471699684927370436456879165916880644057489605154542986496} a^{18} + \frac{8295525965243332124448536161674577249428984796677888887}{490566561642456812152293055305626881352496535051514328832} a^{17} - \frac{86047129194336426979207011690682147825472044192813860097}{2943399369854740872913758331833761288114979210309085972992} a^{16} + \frac{4456103597954165216494728877782994390365302111889073529}{490566561642456812152293055305626881352496535051514328832} a^{15} + \frac{3778399148425973364147041485093297805543181695932641301}{45990615153980326139277473934902520126796550161079468328} a^{14} - \frac{27777449277961394267068504380360523040627365651533504511}{245283280821228406076146527652813440676248267525757164416} a^{13} + \frac{74842268821781383404368993470078941462757575421754020607}{2207549527391055654685318748875320966086234407731814479744} a^{12} - \frac{40744825744459989156005155022917824218869188115030515463}{1103774763695527827342659374437660483043117203865907239872} a^{11} - \frac{18625768324197886537105044223868415874642532556987873843}{245283280821228406076146527652813440676248267525757164416} a^{10} - \frac{106587605700350990886691318203704053025638633940602203}{3832551262831693844939789494575210010566379180089955694} a^{9} - \frac{48192706193427917997981176662120141002419289208663251261}{245283280821228406076146527652813440676248267525757164416} a^{8} - \frac{25011137247858471231628167417775673088270925095573432843}{61320820205307101519036631913203360169062066881439291104} a^{7} - \frac{69801044898200342076501707787426983550768704584621661803}{367924921231842609114219791479220161014372401288635746624} a^{6} - \frac{17272607921789266678007774352156742812476090206066098539}{45990615153980326139277473934902520126796550161079468328} a^{5} - \frac{2329557183986482635843341526285498449798871806568509387}{122641640410614203038073263826406720338124133762878582208} a^{4} + \frac{9227117707836614252600383918772503469402551002137269465}{183962460615921304557109895739610080507186200644317873312} a^{3} - \frac{1492698687571947577670138723088395781257217554860943083}{5748826894247540767409684241862815015849568770134933541} a^{2} + \frac{624203455497416454525950994018923461717121585827864379}{22995307576990163069638736967451260063398275080539734164} a + \frac{2754866821501231619383764531670397429635634870242423156}{5748826894247540767409684241862815015849568770134933541}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 24861330893900000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$M_{22}$ (as 22T38):
| A non-solvable group of order 443520 |
| The 12 conjugacy class representatives for $M_{22}$ |
| Character table for $M_{22}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 2.4.6.7 | $x^{4} + 2 x^{3} + 2 x^{2} + 2$ | $4$ | $1$ | $6$ | $A_4$ | $[2, 2]^{3}$ | |
| 2.12.18.59 | $x^{12} - 2 x^{11} + 6 x^{10} + 4 x^{9} + 6 x^{8} + 12 x^{7} - 4 x^{6} - 8 x^{3} + 16 x^{2} - 8$ | $4$ | $3$ | $18$ | $A_4$ | $[2, 2]^{3}$ | |
| $3$ | 3.11.10.1 | $x^{11} - 3$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ |
| 3.11.10.1 | $x^{11} - 3$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ | |
| $11$ | 11.11.14.1 | $x^{11} + 33 x^{4} + 11$ | $11$ | $1$ | $14$ | $C_{11}:C_5$ | $[7/5]_{5}$ |
| 11.11.14.1 | $x^{11} + 33 x^{4} + 11$ | $11$ | $1$ | $14$ | $C_{11}:C_5$ | $[7/5]_{5}$ |