Properties

Label 22.6.801...000.1
Degree $22$
Signature $[6, 8]$
Discriminant $8.012\times 10^{49}$
Root discriminant \(185.50\)
Ramified primes $2,3,5,31$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $M_{11}\wr C_2$ (as 22T48)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^22 - 7*x^21 - 14*x^20 + 265*x^19 - 520*x^18 - 14689*x^17 + 11653*x^16 - 22154*x^15 - 1607845*x^14 + 4298285*x^13 - 18440204*x^12 - 22310537*x^11 + 285023156*x^10 - 1085639155*x^9 + 3962459515*x^8 - 7396721954*x^7 + 11379240893*x^6 - 15698920969*x^5 + 12781094360*x^4 - 10215692655*x^3 + 7469116746*x^2 - 3243825927*x + 549451881)
 
gp: K = bnfinit(y^22 - 7*y^21 - 14*y^20 + 265*y^19 - 520*y^18 - 14689*y^17 + 11653*y^16 - 22154*y^15 - 1607845*y^14 + 4298285*y^13 - 18440204*y^12 - 22310537*y^11 + 285023156*y^10 - 1085639155*y^9 + 3962459515*y^8 - 7396721954*y^7 + 11379240893*y^6 - 15698920969*y^5 + 12781094360*y^4 - 10215692655*y^3 + 7469116746*y^2 - 3243825927*y + 549451881, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^22 - 7*x^21 - 14*x^20 + 265*x^19 - 520*x^18 - 14689*x^17 + 11653*x^16 - 22154*x^15 - 1607845*x^14 + 4298285*x^13 - 18440204*x^12 - 22310537*x^11 + 285023156*x^10 - 1085639155*x^9 + 3962459515*x^8 - 7396721954*x^7 + 11379240893*x^6 - 15698920969*x^5 + 12781094360*x^4 - 10215692655*x^3 + 7469116746*x^2 - 3243825927*x + 549451881);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^22 - 7*x^21 - 14*x^20 + 265*x^19 - 520*x^18 - 14689*x^17 + 11653*x^16 - 22154*x^15 - 1607845*x^14 + 4298285*x^13 - 18440204*x^12 - 22310537*x^11 + 285023156*x^10 - 1085639155*x^9 + 3962459515*x^8 - 7396721954*x^7 + 11379240893*x^6 - 15698920969*x^5 + 12781094360*x^4 - 10215692655*x^3 + 7469116746*x^2 - 3243825927*x + 549451881)
 

\( x^{22} - 7 x^{21} - 14 x^{20} + 265 x^{19} - 520 x^{18} - 14689 x^{17} + 11653 x^{16} - 22154 x^{15} + \cdots + 549451881 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $22$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[6, 8]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(80119853675928619057152000000000000000000000000000\) \(\medspace = 2^{48}\cdot 3^{16}\cdot 5^{27}\cdot 31^{6}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(185.50\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  not computed
Ramified primes:   \(2\), \(3\), \(5\), \(31\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{5}) \)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{4}a^{6}-\frac{1}{4}a^{5}-\frac{1}{4}a^{3}-\frac{1}{4}a-\frac{1}{4}$, $\frac{1}{4}a^{7}-\frac{1}{4}a^{5}-\frac{1}{4}a^{4}-\frac{1}{4}a^{3}-\frac{1}{4}a^{2}-\frac{1}{2}a-\frac{1}{4}$, $\frac{1}{8}a^{8}-\frac{1}{4}a^{5}-\frac{1}{8}a^{4}-\frac{1}{4}a^{3}-\frac{1}{4}a^{2}-\frac{1}{4}a-\frac{1}{8}$, $\frac{1}{8}a^{9}+\frac{1}{8}a^{5}-\frac{1}{4}a^{4}-\frac{1}{4}a^{2}+\frac{1}{8}a-\frac{1}{4}$, $\frac{1}{40}a^{10}-\frac{1}{8}a^{6}+\frac{1}{5}a^{5}-\frac{3}{8}a^{2}+\frac{3}{20}$, $\frac{1}{40}a^{11}-\frac{1}{8}a^{7}-\frac{1}{20}a^{6}-\frac{1}{4}a^{5}+\frac{3}{8}a^{3}-\frac{1}{10}a+\frac{1}{4}$, $\frac{1}{80}a^{12}-\frac{1}{80}a^{10}+\frac{1}{10}a^{7}-\frac{1}{16}a^{6}+\frac{3}{20}a^{5}-\frac{1}{4}a^{4}-\frac{1}{4}a^{3}+\frac{11}{80}a^{2}+\frac{1}{4}a-\frac{1}{80}$, $\frac{1}{400}a^{13}+\frac{1}{200}a^{12}+\frac{3}{400}a^{11}+\frac{1}{100}a^{10}+\frac{1}{20}a^{9}-\frac{11}{200}a^{8}-\frac{49}{400}a^{7}-\frac{9}{100}a^{6}+\frac{23}{100}a^{5}-\frac{7}{40}a^{4}-\frac{149}{400}a^{3}+\frac{33}{100}a^{2}-\frac{177}{400}a-\frac{11}{25}$, $\frac{1}{800}a^{14}-\frac{1}{800}a^{13}+\frac{1}{400}a^{12}+\frac{1}{160}a^{11}+\frac{3}{800}a^{10}+\frac{9}{400}a^{9}+\frac{17}{800}a^{8}+\frac{1}{800}a^{7}+\frac{11}{160}a^{6}-\frac{43}{400}a^{5}+\frac{61}{800}a^{4}+\frac{29}{800}a^{3}-\frac{9}{400}a^{2}+\frac{3}{160}a-\frac{377}{800}$, $\frac{1}{800}a^{15}-\frac{1}{800}a^{13}+\frac{3}{800}a^{12}+\frac{1}{400}a^{11}-\frac{7}{800}a^{10}-\frac{1}{160}a^{9}-\frac{19}{400}a^{8}-\frac{23}{400}a^{7}-\frac{59}{800}a^{6}-\frac{169}{800}a^{5}+\frac{13}{80}a^{4}-\frac{291}{800}a^{3}+\frac{33}{800}a^{2}+\frac{49}{100}a-\frac{9}{160}$, $\frac{1}{1600}a^{16}-\frac{1}{160}a^{12}-\frac{1}{200}a^{11}+\frac{1}{40}a^{9}+\frac{3}{320}a^{8}-\frac{1}{40}a^{7}-\frac{3}{25}a^{6}+\frac{1}{40}a^{5}-\frac{9}{160}a^{4}+\frac{19}{40}a^{3}+\frac{3}{8}a^{2}-\frac{47}{200}a-\frac{3}{320}$, $\frac{1}{1600}a^{17}-\frac{1}{800}a^{13}+\frac{1}{200}a^{12}-\frac{1}{100}a^{11}-\frac{1}{200}a^{10}-\frac{1}{64}a^{9}-\frac{1}{100}a^{8}+\frac{1}{100}a^{7}-\frac{21}{200}a^{6}-\frac{97}{800}a^{5}+\frac{1}{200}a^{3}-\frac{3}{40}a^{2}-\frac{671}{1600}a-\frac{61}{200}$, $\frac{1}{99200}a^{18}+\frac{3}{99200}a^{17}+\frac{1}{3968}a^{16}+\frac{11}{49600}a^{14}-\frac{59}{49600}a^{13}-\frac{13}{49600}a^{12}-\frac{23}{12400}a^{11}+\frac{159}{99200}a^{10}+\frac{5421}{99200}a^{9}+\frac{73}{3200}a^{8}+\frac{1211}{12400}a^{7}-\frac{1501}{49600}a^{6}+\frac{41}{49600}a^{5}-\frac{2529}{49600}a^{4}+\frac{1619}{6200}a^{3}-\frac{1231}{3968}a^{2}-\frac{15109}{99200}a+\frac{38729}{99200}$, $\frac{1}{99200}a^{19}+\frac{1}{6200}a^{17}-\frac{13}{99200}a^{16}+\frac{11}{49600}a^{15}-\frac{3}{4960}a^{14}-\frac{11}{24800}a^{13}+\frac{133}{49600}a^{12}+\frac{91}{99200}a^{11}+\frac{151}{24800}a^{10}-\frac{231}{12400}a^{9}-\frac{1007}{99200}a^{8}-\frac{247}{1984}a^{7}-\frac{1417}{24800}a^{6}+\frac{162}{775}a^{5}+\frac{11611}{49600}a^{4}+\frac{3981}{99200}a^{3}+\frac{1943}{6200}a^{2}-\frac{51}{992}a-\frac{24737}{99200}$, $\frac{1}{1190400}a^{20}+\frac{1}{595200}a^{19}-\frac{1}{238080}a^{18}-\frac{23}{119040}a^{17}+\frac{43}{238080}a^{16}-\frac{97}{297600}a^{15}+\frac{49}{119040}a^{14}+\frac{13}{297600}a^{13}-\frac{7387}{1190400}a^{12}+\frac{37}{19200}a^{11}+\frac{733}{1190400}a^{10}-\frac{1123}{19200}a^{9}-\frac{15139}{1190400}a^{8}-\frac{24199}{297600}a^{7}+\frac{881}{595200}a^{6}+\frac{62491}{297600}a^{5}-\frac{1831}{38400}a^{4}+\frac{61501}{595200}a^{3}+\frac{42803}{1190400}a^{2}+\frac{65979}{198400}a-\frac{1289}{79360}$, $\frac{1}{38\!\cdots\!00}a^{21}-\frac{25\!\cdots\!89}{60\!\cdots\!00}a^{20}-\frac{73\!\cdots\!41}{38\!\cdots\!00}a^{19}-\frac{10\!\cdots\!61}{24\!\cdots\!40}a^{18}+\frac{69\!\cdots\!07}{38\!\cdots\!00}a^{17}+\frac{34\!\cdots\!27}{19\!\cdots\!00}a^{16}-\frac{17\!\cdots\!11}{19\!\cdots\!00}a^{15}-\frac{47\!\cdots\!27}{19\!\cdots\!12}a^{14}+\frac{76\!\cdots\!49}{15\!\cdots\!96}a^{13}-\frac{56\!\cdots\!37}{97\!\cdots\!00}a^{12}+\frac{45\!\cdots\!33}{38\!\cdots\!00}a^{11}+\frac{81\!\cdots\!31}{78\!\cdots\!00}a^{10}+\frac{14\!\cdots\!93}{38\!\cdots\!00}a^{9}-\frac{16\!\cdots\!91}{38\!\cdots\!40}a^{8}-\frac{13\!\cdots\!23}{77\!\cdots\!48}a^{7}-\frac{21\!\cdots\!47}{24\!\cdots\!00}a^{6}+\frac{78\!\cdots\!03}{38\!\cdots\!00}a^{5}-\frac{42\!\cdots\!73}{97\!\cdots\!00}a^{4}-\frac{31\!\cdots\!01}{77\!\cdots\!80}a^{3}-\frac{25\!\cdots\!77}{54\!\cdots\!00}a^{2}-\frac{16\!\cdots\!77}{12\!\cdots\!00}a-\frac{34\!\cdots\!27}{69\!\cdots\!00}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $13$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{28\!\cdots\!28}{12\!\cdots\!75}a^{21}+\frac{18\!\cdots\!02}{12\!\cdots\!75}a^{20}-\frac{63\!\cdots\!72}{25\!\cdots\!35}a^{19}+\frac{55\!\cdots\!52}{25\!\cdots\!35}a^{18}+\frac{35\!\cdots\!80}{50\!\cdots\!27}a^{17}-\frac{64\!\cdots\!67}{12\!\cdots\!75}a^{16}-\frac{52\!\cdots\!08}{12\!\cdots\!75}a^{15}+\frac{11\!\cdots\!76}{25\!\cdots\!35}a^{14}-\frac{10\!\cdots\!56}{25\!\cdots\!35}a^{13}-\frac{19\!\cdots\!18}{50\!\cdots\!27}a^{12}+\frac{13\!\cdots\!88}{12\!\cdots\!75}a^{11}-\frac{76\!\cdots\!68}{12\!\cdots\!75}a^{10}+\frac{63\!\cdots\!64}{25\!\cdots\!35}a^{9}+\frac{16\!\cdots\!26}{25\!\cdots\!35}a^{8}-\frac{12\!\cdots\!12}{50\!\cdots\!27}a^{7}+\frac{13\!\cdots\!88}{12\!\cdots\!75}a^{6}-\frac{26\!\cdots\!48}{12\!\cdots\!75}a^{5}+\frac{73\!\cdots\!82}{25\!\cdots\!35}a^{4}-\frac{10\!\cdots\!72}{25\!\cdots\!35}a^{3}+\frac{18\!\cdots\!20}{56\!\cdots\!03}a^{2}-\frac{57\!\cdots\!04}{42\!\cdots\!25}a+\frac{25\!\cdots\!83}{14\!\cdots\!75}$, $\frac{82\!\cdots\!73}{38\!\cdots\!00}a^{21}-\frac{35\!\cdots\!91}{48\!\cdots\!00}a^{20}-\frac{25\!\cdots\!53}{38\!\cdots\!00}a^{19}+\frac{92\!\cdots\!89}{24\!\cdots\!40}a^{18}+\frac{18\!\cdots\!83}{38\!\cdots\!00}a^{17}-\frac{61\!\cdots\!61}{19\!\cdots\!00}a^{16}-\frac{16\!\cdots\!91}{19\!\cdots\!00}a^{15}-\frac{99\!\cdots\!11}{48\!\cdots\!00}a^{14}-\frac{15\!\cdots\!83}{38\!\cdots\!00}a^{13}-\frac{44\!\cdots\!47}{97\!\cdots\!00}a^{12}-\frac{14\!\cdots\!07}{38\!\cdots\!00}a^{11}-\frac{23\!\cdots\!41}{12\!\cdots\!00}a^{10}+\frac{79\!\cdots\!89}{77\!\cdots\!80}a^{9}-\frac{26\!\cdots\!47}{19\!\cdots\!00}a^{8}+\frac{37\!\cdots\!61}{19\!\cdots\!00}a^{7}-\frac{35\!\cdots\!61}{12\!\cdots\!00}a^{6}+\frac{12\!\cdots\!77}{12\!\cdots\!00}a^{5}+\frac{77\!\cdots\!09}{97\!\cdots\!00}a^{4}-\frac{42\!\cdots\!53}{38\!\cdots\!00}a^{3}+\frac{16\!\cdots\!87}{16\!\cdots\!00}a^{2}-\frac{82\!\cdots\!89}{12\!\cdots\!00}a+\frac{88\!\cdots\!27}{43\!\cdots\!60}$, $\frac{76\!\cdots\!19}{12\!\cdots\!00}a^{21}-\frac{51\!\cdots\!39}{12\!\cdots\!00}a^{20}-\frac{12\!\cdots\!97}{12\!\cdots\!00}a^{19}+\frac{20\!\cdots\!79}{12\!\cdots\!00}a^{18}-\frac{34\!\cdots\!97}{12\!\cdots\!00}a^{17}-\frac{22\!\cdots\!03}{25\!\cdots\!60}a^{16}+\frac{30\!\cdots\!69}{64\!\cdots\!00}a^{15}-\frac{76\!\cdots\!99}{64\!\cdots\!00}a^{14}-\frac{12\!\cdots\!77}{12\!\cdots\!00}a^{13}+\frac{11\!\cdots\!01}{51\!\cdots\!32}a^{12}-\frac{13\!\cdots\!11}{12\!\cdots\!00}a^{11}-\frac{20\!\cdots\!63}{12\!\cdots\!00}a^{10}+\frac{21\!\cdots\!37}{12\!\cdots\!00}a^{9}-\frac{78\!\cdots\!73}{12\!\cdots\!00}a^{8}+\frac{14\!\cdots\!93}{64\!\cdots\!00}a^{7}-\frac{24\!\cdots\!87}{64\!\cdots\!00}a^{6}+\frac{72\!\cdots\!93}{12\!\cdots\!00}a^{5}-\frac{98\!\cdots\!37}{12\!\cdots\!00}a^{4}+\frac{69\!\cdots\!71}{12\!\cdots\!00}a^{3}-\frac{17\!\cdots\!23}{43\!\cdots\!00}a^{2}+\frac{14\!\cdots\!07}{43\!\cdots\!00}a-\frac{34\!\cdots\!23}{43\!\cdots\!00}$, $\frac{64\!\cdots\!97}{24\!\cdots\!00}a^{21}-\frac{67\!\cdots\!67}{38\!\cdots\!00}a^{20}-\frac{88\!\cdots\!73}{19\!\cdots\!00}a^{19}+\frac{26\!\cdots\!03}{38\!\cdots\!00}a^{18}-\frac{40\!\cdots\!03}{38\!\cdots\!40}a^{17}-\frac{15\!\cdots\!69}{38\!\cdots\!00}a^{16}+\frac{11\!\cdots\!69}{97\!\cdots\!00}a^{15}-\frac{10\!\cdots\!43}{19\!\cdots\!00}a^{14}-\frac{41\!\cdots\!91}{97\!\cdots\!00}a^{13}+\frac{36\!\cdots\!49}{38\!\cdots\!00}a^{12}-\frac{86\!\cdots\!91}{19\!\cdots\!00}a^{11}-\frac{30\!\cdots\!59}{38\!\cdots\!00}a^{10}+\frac{89\!\cdots\!73}{12\!\cdots\!40}a^{9}-\frac{97\!\cdots\!11}{38\!\cdots\!00}a^{8}+\frac{90\!\cdots\!03}{97\!\cdots\!00}a^{7}-\frac{30\!\cdots\!11}{19\!\cdots\!00}a^{6}+\frac{23\!\cdots\!07}{97\!\cdots\!00}a^{5}-\frac{13\!\cdots\!93}{38\!\cdots\!00}a^{4}+\frac{46\!\cdots\!11}{19\!\cdots\!00}a^{3}-\frac{30\!\cdots\!87}{12\!\cdots\!00}a^{2}+\frac{10\!\cdots\!31}{64\!\cdots\!00}a-\frac{18\!\cdots\!27}{43\!\cdots\!00}$, $\frac{11\!\cdots\!47}{38\!\cdots\!00}a^{21}-\frac{15\!\cdots\!89}{77\!\cdots\!80}a^{20}-\frac{19\!\cdots\!57}{38\!\cdots\!00}a^{19}+\frac{60\!\cdots\!01}{77\!\cdots\!80}a^{18}-\frac{48\!\cdots\!97}{38\!\cdots\!00}a^{17}-\frac{17\!\cdots\!69}{38\!\cdots\!00}a^{16}+\frac{33\!\cdots\!21}{19\!\cdots\!00}a^{15}-\frac{23\!\cdots\!49}{38\!\cdots\!40}a^{14}-\frac{18\!\cdots\!49}{38\!\cdots\!00}a^{13}+\frac{42\!\cdots\!19}{38\!\cdots\!00}a^{12}-\frac{39\!\cdots\!63}{77\!\cdots\!80}a^{11}-\frac{33\!\cdots\!69}{38\!\cdots\!00}a^{10}+\frac{31\!\cdots\!01}{38\!\cdots\!00}a^{9}-\frac{11\!\cdots\!27}{38\!\cdots\!00}a^{8}+\frac{20\!\cdots\!09}{19\!\cdots\!00}a^{7}-\frac{34\!\cdots\!33}{19\!\cdots\!00}a^{6}+\frac{10\!\cdots\!37}{38\!\cdots\!00}a^{5}-\frac{14\!\cdots\!59}{38\!\cdots\!00}a^{4}+\frac{93\!\cdots\!51}{38\!\cdots\!00}a^{3}-\frac{10\!\cdots\!17}{51\!\cdots\!32}a^{2}+\frac{18\!\cdots\!51}{12\!\cdots\!00}a-\frac{11\!\cdots\!29}{27\!\cdots\!20}$, $\frac{25\!\cdots\!37}{19\!\cdots\!00}a^{21}-\frac{14\!\cdots\!91}{19\!\cdots\!00}a^{20}-\frac{10\!\cdots\!03}{38\!\cdots\!40}a^{19}+\frac{60\!\cdots\!49}{19\!\cdots\!00}a^{18}-\frac{59\!\cdots\!93}{19\!\cdots\!00}a^{17}-\frac{38\!\cdots\!81}{19\!\cdots\!00}a^{16}-\frac{87\!\cdots\!61}{97\!\cdots\!00}a^{15}-\frac{44\!\cdots\!53}{97\!\cdots\!00}a^{14}-\frac{42\!\cdots\!31}{19\!\cdots\!00}a^{13}+\frac{56\!\cdots\!17}{19\!\cdots\!00}a^{12}-\frac{41\!\cdots\!69}{19\!\cdots\!00}a^{11}-\frac{10\!\cdots\!61}{19\!\cdots\!00}a^{10}+\frac{58\!\cdots\!17}{19\!\cdots\!00}a^{9}-\frac{83\!\cdots\!43}{77\!\cdots\!48}a^{8}+\frac{76\!\cdots\!63}{19\!\cdots\!20}a^{7}-\frac{48\!\cdots\!21}{97\!\cdots\!00}a^{6}+\frac{18\!\cdots\!07}{19\!\cdots\!00}a^{5}-\frac{18\!\cdots\!01}{19\!\cdots\!00}a^{4}+\frac{13\!\cdots\!37}{19\!\cdots\!00}a^{3}-\frac{12\!\cdots\!71}{21\!\cdots\!00}a^{2}+\frac{45\!\cdots\!07}{12\!\cdots\!80}a-\frac{17\!\cdots\!47}{21\!\cdots\!00}$, $\frac{49\!\cdots\!53}{38\!\cdots\!00}a^{21}-\frac{32\!\cdots\!57}{38\!\cdots\!00}a^{20}-\frac{81\!\cdots\!71}{38\!\cdots\!00}a^{19}+\frac{25\!\cdots\!69}{77\!\cdots\!80}a^{18}-\frac{20\!\cdots\!43}{38\!\cdots\!00}a^{17}-\frac{73\!\cdots\!93}{38\!\cdots\!00}a^{16}+\frac{46\!\cdots\!73}{62\!\cdots\!00}a^{15}-\frac{97\!\cdots\!89}{38\!\cdots\!40}a^{14}-\frac{79\!\cdots\!31}{38\!\cdots\!00}a^{13}+\frac{36\!\cdots\!11}{77\!\cdots\!80}a^{12}-\frac{83\!\cdots\!21}{38\!\cdots\!00}a^{11}-\frac{14\!\cdots\!01}{38\!\cdots\!00}a^{10}+\frac{13\!\cdots\!43}{38\!\cdots\!00}a^{9}-\frac{48\!\cdots\!43}{38\!\cdots\!00}a^{8}+\frac{88\!\cdots\!07}{19\!\cdots\!00}a^{7}-\frac{14\!\cdots\!13}{19\!\cdots\!00}a^{6}+\frac{44\!\cdots\!27}{38\!\cdots\!00}a^{5}-\frac{60\!\cdots\!47}{38\!\cdots\!00}a^{4}+\frac{39\!\cdots\!49}{38\!\cdots\!00}a^{3}-\frac{11\!\cdots\!57}{12\!\cdots\!00}a^{2}+\frac{77\!\cdots\!09}{12\!\cdots\!00}a-\frac{15\!\cdots\!51}{86\!\cdots\!20}$, $\frac{90\!\cdots\!11}{38\!\cdots\!00}a^{21}-\frac{53\!\cdots\!79}{38\!\cdots\!00}a^{20}-\frac{23\!\cdots\!41}{38\!\cdots\!00}a^{19}+\frac{24\!\cdots\!91}{38\!\cdots\!00}a^{18}-\frac{78\!\cdots\!97}{38\!\cdots\!00}a^{17}-\frac{14\!\cdots\!79}{38\!\cdots\!00}a^{16}-\frac{20\!\cdots\!71}{19\!\cdots\!00}a^{15}+\frac{33\!\cdots\!57}{19\!\cdots\!00}a^{14}-\frac{14\!\cdots\!77}{38\!\cdots\!00}a^{13}+\frac{15\!\cdots\!37}{38\!\cdots\!00}a^{12}-\frac{64\!\cdots\!03}{38\!\cdots\!00}a^{11}-\frac{36\!\cdots\!19}{38\!\cdots\!00}a^{10}+\frac{87\!\cdots\!97}{15\!\cdots\!96}a^{9}-\frac{50\!\cdots\!89}{38\!\cdots\!00}a^{8}+\frac{84\!\cdots\!61}{19\!\cdots\!00}a^{7}-\frac{12\!\cdots\!23}{19\!\cdots\!00}a^{6}+\frac{68\!\cdots\!97}{77\!\cdots\!80}a^{5}-\frac{47\!\cdots\!93}{38\!\cdots\!00}a^{4}+\frac{51\!\cdots\!91}{77\!\cdots\!80}a^{3}-\frac{28\!\cdots\!73}{43\!\cdots\!00}a^{2}+\frac{52\!\cdots\!99}{12\!\cdots\!00}a-\frac{64\!\cdots\!17}{86\!\cdots\!20}$, $\frac{18\!\cdots\!47}{38\!\cdots\!00}a^{21}-\frac{11\!\cdots\!71}{38\!\cdots\!40}a^{20}-\frac{35\!\cdots\!59}{38\!\cdots\!00}a^{19}+\frac{45\!\cdots\!07}{38\!\cdots\!40}a^{18}-\frac{54\!\cdots\!79}{38\!\cdots\!00}a^{17}-\frac{33\!\cdots\!67}{48\!\cdots\!00}a^{16}-\frac{89\!\cdots\!49}{19\!\cdots\!00}a^{15}-\frac{87\!\cdots\!53}{97\!\cdots\!00}a^{14}-\frac{29\!\cdots\!81}{38\!\cdots\!00}a^{13}+\frac{26\!\cdots\!27}{19\!\cdots\!00}a^{12}-\frac{90\!\cdots\!19}{12\!\cdots\!00}a^{11}-\frac{32\!\cdots\!79}{19\!\cdots\!00}a^{10}+\frac{46\!\cdots\!91}{38\!\cdots\!00}a^{9}-\frac{19\!\cdots\!71}{48\!\cdots\!00}a^{8}+\frac{92\!\cdots\!17}{62\!\cdots\!00}a^{7}-\frac{20\!\cdots\!03}{97\!\cdots\!00}a^{6}+\frac{24\!\cdots\!89}{77\!\cdots\!80}a^{5}-\frac{15\!\cdots\!99}{38\!\cdots\!40}a^{4}+\frac{67\!\cdots\!49}{38\!\cdots\!00}a^{3}-\frac{15\!\cdots\!99}{64\!\cdots\!00}a^{2}+\frac{27\!\cdots\!81}{25\!\cdots\!60}a-\frac{87\!\cdots\!49}{10\!\cdots\!00}$, $\frac{10\!\cdots\!53}{19\!\cdots\!00}a^{21}-\frac{86\!\cdots\!27}{24\!\cdots\!00}a^{20}-\frac{69\!\cdots\!73}{77\!\cdots\!48}a^{19}+\frac{13\!\cdots\!87}{97\!\cdots\!00}a^{18}-\frac{14\!\cdots\!33}{62\!\cdots\!00}a^{17}-\frac{38\!\cdots\!37}{48\!\cdots\!00}a^{16}+\frac{30\!\cdots\!77}{97\!\cdots\!00}a^{15}-\frac{52\!\cdots\!63}{48\!\cdots\!00}a^{14}-\frac{33\!\cdots\!91}{38\!\cdots\!40}a^{13}+\frac{19\!\cdots\!87}{97\!\cdots\!56}a^{12}-\frac{17\!\cdots\!19}{19\!\cdots\!00}a^{11}-\frac{15\!\cdots\!71}{97\!\cdots\!00}a^{10}+\frac{28\!\cdots\!39}{19\!\cdots\!00}a^{9}-\frac{25\!\cdots\!43}{48\!\cdots\!00}a^{8}+\frac{18\!\cdots\!97}{97\!\cdots\!00}a^{7}-\frac{31\!\cdots\!37}{97\!\cdots\!60}a^{6}+\frac{94\!\cdots\!71}{19\!\cdots\!00}a^{5}-\frac{49\!\cdots\!87}{76\!\cdots\!75}a^{4}+\frac{84\!\cdots\!63}{19\!\cdots\!00}a^{3}-\frac{12\!\cdots\!11}{32\!\cdots\!00}a^{2}+\frac{16\!\cdots\!93}{64\!\cdots\!00}a-\frac{40\!\cdots\!27}{54\!\cdots\!00}$, $\frac{16\!\cdots\!73}{10\!\cdots\!00}a^{21}-\frac{93\!\cdots\!43}{12\!\cdots\!80}a^{20}-\frac{25\!\cdots\!49}{64\!\cdots\!40}a^{19}+\frac{20\!\cdots\!33}{64\!\cdots\!00}a^{18}-\frac{58\!\cdots\!83}{32\!\cdots\!00}a^{17}-\frac{59\!\cdots\!41}{25\!\cdots\!16}a^{16}-\frac{37\!\cdots\!67}{10\!\cdots\!20}a^{15}-\frac{33\!\cdots\!01}{32\!\cdots\!00}a^{14}-\frac{88\!\cdots\!17}{32\!\cdots\!00}a^{13}+\frac{40\!\cdots\!49}{12\!\cdots\!80}a^{12}-\frac{85\!\cdots\!27}{32\!\cdots\!00}a^{11}-\frac{62\!\cdots\!49}{64\!\cdots\!00}a^{10}+\frac{72\!\cdots\!27}{32\!\cdots\!00}a^{9}-\frac{71\!\cdots\!71}{64\!\cdots\!00}a^{8}+\frac{54\!\cdots\!17}{16\!\cdots\!00}a^{7}-\frac{10\!\cdots\!97}{32\!\cdots\!00}a^{6}+\frac{26\!\cdots\!49}{32\!\cdots\!00}a^{5}-\frac{13\!\cdots\!87}{20\!\cdots\!00}a^{4}+\frac{16\!\cdots\!11}{32\!\cdots\!00}a^{3}-\frac{29\!\cdots\!87}{64\!\cdots\!00}a^{2}+\frac{51\!\cdots\!61}{21\!\cdots\!80}a-\frac{10\!\cdots\!13}{21\!\cdots\!00}$, $\frac{15\!\cdots\!71}{12\!\cdots\!00}a^{21}-\frac{43\!\cdots\!23}{43\!\cdots\!00}a^{20}-\frac{72\!\cdots\!67}{43\!\cdots\!00}a^{19}+\frac{42\!\cdots\!13}{12\!\cdots\!00}a^{18}-\frac{55\!\cdots\!59}{43\!\cdots\!00}a^{17}-\frac{20\!\cdots\!77}{12\!\cdots\!00}a^{16}+\frac{88\!\cdots\!59}{21\!\cdots\!00}a^{15}-\frac{94\!\cdots\!49}{64\!\cdots\!00}a^{14}-\frac{95\!\cdots\!63}{43\!\cdots\!00}a^{13}+\frac{11\!\cdots\!27}{12\!\cdots\!00}a^{12}-\frac{15\!\cdots\!81}{43\!\cdots\!00}a^{11}-\frac{58\!\cdots\!33}{25\!\cdots\!60}a^{10}+\frac{19\!\cdots\!43}{43\!\cdots\!00}a^{9}-\frac{26\!\cdots\!91}{12\!\cdots\!00}a^{8}+\frac{14\!\cdots\!47}{21\!\cdots\!00}a^{7}-\frac{75\!\cdots\!21}{64\!\cdots\!00}a^{6}+\frac{76\!\cdots\!63}{43\!\cdots\!00}a^{5}-\frac{58\!\cdots\!87}{25\!\cdots\!60}a^{4}+\frac{19\!\cdots\!67}{12\!\cdots\!00}a^{3}-\frac{16\!\cdots\!27}{12\!\cdots\!00}a^{2}+\frac{35\!\cdots\!67}{43\!\cdots\!00}a-\frac{10\!\cdots\!73}{43\!\cdots\!00}$, $\frac{56\!\cdots\!83}{32\!\cdots\!00}a^{21}-\frac{74\!\cdots\!07}{64\!\cdots\!00}a^{20}-\frac{94\!\cdots\!79}{32\!\cdots\!00}a^{19}+\frac{11\!\cdots\!01}{25\!\cdots\!16}a^{18}-\frac{23\!\cdots\!91}{32\!\cdots\!00}a^{17}-\frac{16\!\cdots\!53}{64\!\cdots\!00}a^{16}+\frac{15\!\cdots\!31}{16\!\cdots\!00}a^{15}-\frac{11\!\cdots\!97}{32\!\cdots\!00}a^{14}-\frac{91\!\cdots\!09}{32\!\cdots\!00}a^{13}+\frac{41\!\cdots\!93}{64\!\cdots\!00}a^{12}-\frac{38\!\cdots\!17}{12\!\cdots\!08}a^{11}-\frac{33\!\cdots\!73}{64\!\cdots\!00}a^{10}+\frac{15\!\cdots\!11}{32\!\cdots\!00}a^{9}-\frac{11\!\cdots\!59}{64\!\cdots\!00}a^{8}+\frac{20\!\cdots\!93}{32\!\cdots\!20}a^{7}-\frac{67\!\cdots\!81}{64\!\cdots\!40}a^{6}+\frac{50\!\cdots\!01}{32\!\cdots\!00}a^{5}-\frac{27\!\cdots\!97}{12\!\cdots\!80}a^{4}+\frac{44\!\cdots\!81}{32\!\cdots\!00}a^{3}-\frac{26\!\cdots\!37}{21\!\cdots\!00}a^{2}+\frac{87\!\cdots\!97}{10\!\cdots\!00}a-\frac{52\!\cdots\!37}{21\!\cdots\!00}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 129933926047000000 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{6}\cdot(2\pi)^{8}\cdot 129933926047000000 \cdot 1}{2\cdot\sqrt{80119853675928619057152000000000000000000000000000}}\cr\approx \mathstrut & 1.12834371095592 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^22 - 7*x^21 - 14*x^20 + 265*x^19 - 520*x^18 - 14689*x^17 + 11653*x^16 - 22154*x^15 - 1607845*x^14 + 4298285*x^13 - 18440204*x^12 - 22310537*x^11 + 285023156*x^10 - 1085639155*x^9 + 3962459515*x^8 - 7396721954*x^7 + 11379240893*x^6 - 15698920969*x^5 + 12781094360*x^4 - 10215692655*x^3 + 7469116746*x^2 - 3243825927*x + 549451881)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^22 - 7*x^21 - 14*x^20 + 265*x^19 - 520*x^18 - 14689*x^17 + 11653*x^16 - 22154*x^15 - 1607845*x^14 + 4298285*x^13 - 18440204*x^12 - 22310537*x^11 + 285023156*x^10 - 1085639155*x^9 + 3962459515*x^8 - 7396721954*x^7 + 11379240893*x^6 - 15698920969*x^5 + 12781094360*x^4 - 10215692655*x^3 + 7469116746*x^2 - 3243825927*x + 549451881, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^22 - 7*x^21 - 14*x^20 + 265*x^19 - 520*x^18 - 14689*x^17 + 11653*x^16 - 22154*x^15 - 1607845*x^14 + 4298285*x^13 - 18440204*x^12 - 22310537*x^11 + 285023156*x^10 - 1085639155*x^9 + 3962459515*x^8 - 7396721954*x^7 + 11379240893*x^6 - 15698920969*x^5 + 12781094360*x^4 - 10215692655*x^3 + 7469116746*x^2 - 3243825927*x + 549451881);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^22 - 7*x^21 - 14*x^20 + 265*x^19 - 520*x^18 - 14689*x^17 + 11653*x^16 - 22154*x^15 - 1607845*x^14 + 4298285*x^13 - 18440204*x^12 - 22310537*x^11 + 285023156*x^10 - 1085639155*x^9 + 3962459515*x^8 - 7396721954*x^7 + 11379240893*x^6 - 15698920969*x^5 + 12781094360*x^4 - 10215692655*x^3 + 7469116746*x^2 - 3243825927*x + 549451881);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$M_{11}\wr C_2$ (as 22T48):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 125452800
The 65 conjugacy class representatives for $M_{11}\wr C_2$
Character table for $M_{11}\wr C_2$

Intermediate fields

\(\Q(\sqrt{5}) \)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 24 sibling: data not computed
Degree 44 sibling: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R R ${\href{/padicField/7.6.0.1}{6} }^{3}{,}\,{\href{/padicField/7.2.0.1}{2} }^{2}$ ${\href{/padicField/11.5.0.1}{5} }^{4}{,}\,{\href{/padicField/11.1.0.1}{1} }^{2}$ $16{,}\,{\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.2.0.1}{2} }$ ${\href{/padicField/17.10.0.1}{10} }^{2}{,}\,{\href{/padicField/17.2.0.1}{2} }$ ${\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.5.0.1}{5} }^{2}{,}\,{\href{/padicField/19.3.0.1}{3} }{,}\,{\href{/padicField/19.2.0.1}{2} }{,}\,{\href{/padicField/19.1.0.1}{1} }$ $16{,}\,{\href{/padicField/23.4.0.1}{4} }{,}\,{\href{/padicField/23.2.0.1}{2} }$ ${\href{/padicField/29.8.0.1}{8} }{,}\,{\href{/padicField/29.5.0.1}{5} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ R $22$ ${\href{/padicField/41.11.0.1}{11} }^{2}$ $16{,}\,{\href{/padicField/43.4.0.1}{4} }{,}\,{\href{/padicField/43.2.0.1}{2} }$ ${\href{/padicField/47.6.0.1}{6} }^{3}{,}\,{\href{/padicField/47.2.0.1}{2} }^{2}$ ${\href{/padicField/53.10.0.1}{10} }^{2}{,}\,{\href{/padicField/53.2.0.1}{2} }$ ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.3.0.1}{3} }^{4}{,}\,{\href{/padicField/59.2.0.1}{2} }{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.2.0.1$x^{2} + x + 1$$1$$2$$0$$C_2$$[\ ]^{2}$
2.4.4.4$x^{4} - 2 x^{3} + 4 x^{2} + 12 x + 12$$2$$2$$4$$D_{4}$$[2, 2]^{2}$
Deg $16$$4$$4$$44$
\(3\) Copy content Toggle raw display 3.2.0.1$x^{2} + 2 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
3.4.2.1$x^{4} + 4 x^{3} + 14 x^{2} + 20 x + 13$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.16.14.2$x^{16} + 16 x^{15} + 128 x^{14} + 672 x^{13} + 2576 x^{12} + 7616 x^{11} + 17920 x^{10} + 34188 x^{9} + 53458 x^{8} + 68592 x^{7} + 71008 x^{6} + 56896 x^{5} + 33488 x^{4} + 14784 x^{3} + 6308 x^{2} + 2732 x + 661$$8$$2$$14$$QD_{16}$$[\ ]_{8}^{2}$
\(5\) Copy content Toggle raw display 5.2.1.1$x^{2} + 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.10.13.6$x^{10} + 10 x^{5} + 15 x^{4} + 5$$10$$1$$13$$D_5\times C_5$$[3/2]_{2}^{5}$
5.10.13.6$x^{10} + 10 x^{5} + 15 x^{4} + 5$$10$$1$$13$$D_5\times C_5$$[3/2]_{2}^{5}$
\(31\) Copy content Toggle raw display $\Q_{31}$$x + 28$$1$$1$$0$Trivial$[\ ]$
31.2.0.1$x^{2} + 29 x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
31.4.3.2$x^{4} + 93$$4$$1$$3$$D_{4}$$[\ ]_{4}^{2}$
31.4.3.1$x^{4} + 31$$4$$1$$3$$D_{4}$$[\ ]_{4}^{2}$
31.11.0.1$x^{11} + 20 x + 28$$1$$11$$0$$C_{11}$$[\ ]^{11}$