Normalized defining polynomial
\( x^{22} + 111 x^{20} + 4230 x^{18} + 329346 x^{16} - 2553795 x^{14} - 1664102961 x^{12} - 50639346936 x^{10} + 35043156036 x^{8} + 17771158853280 x^{6} + 85652947987596 x^{4} - 1530431923623624 x^{2} - 6261750295213284 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(63542981627722394592109224251514892767627650000559305228650807296=2^{28}\cdot 3^{28}\cdot 7^{4}\cdot 23^{4}\cdot 137^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $882.25$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 23, 137$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{3} a^{5}$, $\frac{1}{3} a^{6}$, $\frac{1}{3} a^{7}$, $\frac{1}{3} a^{8}$, $\frac{1}{9} a^{9}$, $\frac{1}{18} a^{10} - \frac{1}{6} a^{6}$, $\frac{1}{36} a^{11} - \frac{1}{36} a^{10} - \frac{1}{18} a^{9} - \frac{1}{12} a^{7} + \frac{1}{12} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{36} a^{12} - \frac{1}{36} a^{10} - \frac{1}{18} a^{9} - \frac{1}{12} a^{8} - \frac{1}{12} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{36} a^{13} - \frac{1}{36} a^{10} - \frac{1}{36} a^{9} - \frac{1}{6} a^{7} - \frac{1}{12} a^{6} - \frac{1}{6} a^{5} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{108} a^{14} - \frac{1}{18} a^{9} - \frac{1}{6} a^{8} - \frac{1}{6} a^{7} - \frac{1}{12} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{108} a^{15} - \frac{1}{18} a^{9} - \frac{1}{6} a^{8} - \frac{1}{12} a^{7} - \frac{1}{6} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{540} a^{16} - \frac{1}{540} a^{14} - \frac{1}{90} a^{12} + \frac{1}{45} a^{10} + \frac{7}{60} a^{8} - \frac{1}{60} a^{6} - \frac{1}{6} a^{5} - \frac{1}{10} a^{2} - \frac{1}{2} a + \frac{1}{10}$, $\frac{1}{540} a^{17} - \frac{1}{540} a^{15} - \frac{1}{90} a^{13} - \frac{1}{180} a^{11} - \frac{1}{36} a^{10} - \frac{1}{20} a^{9} + \frac{1}{15} a^{7} - \frac{1}{12} a^{6} + \frac{2}{5} a^{3} + \frac{1}{10} a - \frac{1}{2}$, $\frac{1}{8100} a^{18} + \frac{1}{2700} a^{16} + \frac{1}{540} a^{14} - \frac{2}{225} a^{12} - \frac{1}{900} a^{10} - \frac{1}{18} a^{9} + \frac{19}{300} a^{8} - \frac{23}{300} a^{6} - \frac{17}{50} a^{4} - \frac{21}{50} a^{2} - \frac{1}{2} a + \frac{23}{50}$, $\frac{1}{16200} a^{19} - \frac{1}{16200} a^{18} + \frac{1}{5400} a^{17} - \frac{1}{5400} a^{16} + \frac{1}{1080} a^{15} - \frac{1}{1080} a^{14} + \frac{17}{1800} a^{13} - \frac{17}{1800} a^{12} + \frac{1}{75} a^{11} - \frac{1}{75} a^{10} - \frac{1}{100} a^{9} - \frac{47}{300} a^{8} - \frac{49}{300} a^{7} + \frac{49}{300} a^{6} - \frac{13}{150} a^{5} - \frac{2}{25} a^{4} - \frac{23}{50} a^{3} - \frac{1}{25} a^{2} - \frac{1}{50} a - \frac{12}{25}$, $\frac{1}{2026449502575371232052014283308839528144839863303116538323957727000} a^{20} - \frac{12497711556196799661905919641359185330295316452992904113527953}{337741583762561872008669047218139921357473310550519423053992954500} a^{18} + \frac{17833277535268499932478494595453866533501143077696403597733889}{112580527920853957336223015739379973785824436850173141017997651500} a^{16} - \frac{133411939701453310203225332203918376681389568333850992263994009}{112580527920853957336223015739379973785824436850173141017997651500} a^{14} + \frac{94721000215854155831595617896006634724238198483155864474757639}{75053685280569304890815343826253315857216291233448760678665101000} a^{12} - \frac{122375987848138317493236000937361788868651115691058798473847903}{9381710660071163111351917978281664482152036404181095084833137625} a^{10} - \frac{1}{18} a^{9} + \frac{1500754051160716988726542940335655369940494984115177641642575466}{9381710660071163111351917978281664482152036404181095084833137625} a^{8} - \frac{1}{6} a^{7} - \frac{29619099741676881801165112740529225058606719081639240507580006}{3127236886690387703783972659427221494050678801393698361611045875} a^{6} - \frac{288947762516744732562547912539677151944284251346749738810143797}{1042412295563462567927990886475740498016892933797899453870348625} a^{4} - \frac{52012859411605898967200338084574578317863045553155289310426789}{169039831712993929934268792401471432110847502778037749276272750} a^{2} + \frac{400969103968882497582382248350995165692269393261954730264864507}{2084824591126925135855981772951480996033785867595798907740697250}$, $\frac{1}{8908634747782292927551192099982370848000253965416031560332478156325133000} a^{21} + \frac{18251699741857822073325330146385203552640679982902724651821604560343}{989848305309143658616799122220263427555583773935114617814719795147237000} a^{19} - \frac{1}{16200} a^{18} + \frac{620327625863218576160667428163325619776668817974536120505321230603063}{989848305309143658616799122220263427555583773935114617814719795147237000} a^{17} - \frac{1}{5400} a^{16} - \frac{997510335885053476988357090792234581911666656015209317742284351260981}{329949435103047886205599707406754475851861257978371539271573265049079000} a^{15} - \frac{1}{1080} a^{14} - \frac{1878271568964574572287289032429572814574109227199721011319820225519083}{164974717551523943102799853703377237925930628989185769635786632524539500} a^{13} - \frac{17}{1800} a^{12} - \frac{43104175667314517445429622561464359929643178626907292630465194595939}{54991572517174647700933284567792412641976876329728589878595544174846500} a^{11} + \frac{13}{900} a^{10} - \frac{1977983460535622586472371213438066261752129885042805499165347204313969}{41243679387880985775699963425844309481482657247296442408946658131134875} a^{9} - \frac{47}{300} a^{8} - \frac{3024401260463926894462639683862535950931430413405603282743627452691}{13747893129293661925233321141948103160494219082432147469648886043711625} a^{7} - \frac{13}{150} a^{6} - \frac{1341416039618377319707266041629045817134026912981102567507242220487729}{9165262086195774616822214094632068773662812721621431646432590695807750} a^{5} + \frac{21}{50} a^{4} + \frac{19571491919614905031744423661157444872935141472344850832814334680708}{371564679170098970952251922755354139472816731957625607287807730911125} a^{3} + \frac{23}{50} a^{2} + \frac{826881390930443283784071935916091723267176685519685529672496276878811}{4582631043097887308411107047316034386831406360810715823216295347903875} a + \frac{1}{50}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 21761544372100000000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 20437401600 |
| The 200 conjugacy class representatives for t22n49 are not computed |
| Character table for t22n49 is not computed |
Intermediate fields
| 11.7.63019333158425674204677255696384.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ | $18{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | $18{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.8.14.3 | $x^{8} + 4 x^{6} + 8 x^{3} + 4$ | $8$ | $1$ | $14$ | $C_2^3 : C_4 $ | $[2, 2, 2]^{4}$ | |
| 2.12.14.2 | $x^{12} + 2 x^{4} + 2 x^{3} + 2$ | $12$ | $1$ | $14$ | 12T27 | $[4/3, 4/3]_{3}^{4}$ | |
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.9.13.2 | $x^{9} + 6 x^{5} + 3 x^{3} + 3$ | $9$ | $1$ | $13$ | $C_3^2 : D_{6} $ | $[3/2, 3/2, 5/3]_{2}^{2}$ | |
| 3.9.13.2 | $x^{9} + 6 x^{5} + 3 x^{3} + 3$ | $9$ | $1$ | $13$ | $C_3^2 : D_{6} $ | $[3/2, 3/2, 5/3]_{2}^{2}$ | |
| $7$ | 7.7.0.1 | $x^{7} - x + 2$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 7.7.0.1 | $x^{7} - x + 2$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $23$ | 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.7.0.1 | $x^{7} - x + 8$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ | |
| 23.7.0.1 | $x^{7} - x + 8$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ | |
| $137$ | $\Q_{137}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{137}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 137.5.4.1 | $x^{5} - 137$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 137.5.4.1 | $x^{5} - 137$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 137.5.4.1 | $x^{5} - 137$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 137.5.4.1 | $x^{5} - 137$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |