Normalized defining polynomial
\( x^{22} + 22 x^{20} - 44 x^{19} + 176 x^{18} - 242 x^{17} + 506 x^{16} - 726 x^{15} + 528 x^{14} - 5214 x^{13} + 3894 x^{12} + 316 x^{11} - 23716 x^{10} - 10472 x^{9} + 82962 x^{8} + 101090 x^{7} - 82456 x^{6} - 170368 x^{5} - 12100 x^{4} + 75504 x^{3} + 37510 x^{2} + 6776 x + 242 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6172475179135960522642404800603172634624=2^{28}\cdot 7^{10}\cdot 11^{22}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $64.37$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{11} a^{17} - \frac{3}{11} a^{6}$, $\frac{1}{11} a^{18} - \frac{3}{11} a^{7}$, $\frac{1}{11} a^{19} - \frac{3}{11} a^{8}$, $\frac{1}{11} a^{20} - \frac{3}{11} a^{9}$, $\frac{1}{170500892881714677564028625868043485702560590349030323} a^{21} - \frac{2863043766346554230487207891369144046273743339751573}{170500892881714677564028625868043485702560590349030323} a^{20} - \frac{3537130336562262690172024033569771023649298733440249}{170500892881714677564028625868043485702560590349030323} a^{19} + \frac{4343476605440419925517135512722613159615435390987655}{170500892881714677564028625868043485702560590349030323} a^{18} - \frac{7036278022012912333234544819610834556899748520264703}{170500892881714677564028625868043485702560590349030323} a^{17} - \frac{4329572746747093774614229786940888649454654687358027}{15500081171064970687638965988003953245687326395366393} a^{16} + \frac{736317536128302505175764032392213867871525442531067}{15500081171064970687638965988003953245687326395366393} a^{15} - \frac{6320335564319557400503508206014398517131401625457474}{15500081171064970687638965988003953245687326395366393} a^{14} + \frac{477505917410741507499590013313817760838579390659575}{15500081171064970687638965988003953245687326395366393} a^{13} - \frac{1109092637291069819585947932266939006134487276459605}{15500081171064970687638965988003953245687326395366393} a^{12} - \frac{418001755494270454072898205669006792243535464999668}{15500081171064970687638965988003953245687326395366393} a^{11} + \frac{38180339005398593201328761029930017882358384316926951}{170500892881714677564028625868043485702560590349030323} a^{10} - \frac{17043905922506148195140185452258413638827218932608806}{170500892881714677564028625868043485702560590349030323} a^{9} - \frac{66308232127936172424460758718323781043448619243807967}{170500892881714677564028625868043485702560590349030323} a^{8} - \frac{1002150513003587463888610263179290716532349003920129}{170500892881714677564028625868043485702560590349030323} a^{7} + \frac{68141559908805736835712343943840956197399135377760390}{170500892881714677564028625868043485702560590349030323} a^{6} + \frac{3658026495810511820948997120412378924000543669798170}{15500081171064970687638965988003953245687326395366393} a^{5} - \frac{7555929821575474727684483335396362161120201837321407}{15500081171064970687638965988003953245687326395366393} a^{4} + \frac{2637696129585035097545247447174232429943890929645353}{15500081171064970687638965988003953245687326395366393} a^{3} - \frac{4200997576326805683075828054391071930141832936093281}{15500081171064970687638965988003953245687326395366393} a^{2} - \frac{6153832081774463262319363472553671114004309403201720}{15500081171064970687638965988003953245687326395366393} a - \frac{1848071733310259280256745902209280277232915799219659}{15500081171064970687638965988003953245687326395366393}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 629593387255 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 112640 |
| The 44 conjugacy class representatives for t22n34 |
| Character table for t22n34 is not computed |
Intermediate fields
| 11.11.4910318845910094848.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ | $20{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{5}$ | $20{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 7.10.5.1 | $x^{10} - 98 x^{6} + 2401 x^{2} - 268912$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 7.10.5.1 | $x^{10} - 98 x^{6} + 2401 x^{2} - 268912$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $11$ | 11.11.11.6 | $x^{11} + 11 x + 11$ | $11$ | $1$ | $11$ | $F_{11}$ | $[11/10]_{10}$ |
| 11.11.11.6 | $x^{11} + 11 x + 11$ | $11$ | $1$ | $11$ | $F_{11}$ | $[11/10]_{10}$ | |