Properties

Label 22.6.617...624.1
Degree $22$
Signature $[6, 8]$
Discriminant $6.172\times 10^{39}$
Root discriminant \(64.37\)
Ramified primes $2,7,11$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_2^{10}.F_{11}$ (as 22T34)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^22 + 22*x^20 - 44*x^19 + 176*x^18 - 242*x^17 + 506*x^16 - 726*x^15 + 528*x^14 - 5214*x^13 + 3894*x^12 + 316*x^11 - 23716*x^10 - 10472*x^9 + 82962*x^8 + 101090*x^7 - 82456*x^6 - 170368*x^5 - 12100*x^4 + 75504*x^3 + 37510*x^2 + 6776*x + 242)
 
gp: K = bnfinit(y^22 + 22*y^20 - 44*y^19 + 176*y^18 - 242*y^17 + 506*y^16 - 726*y^15 + 528*y^14 - 5214*y^13 + 3894*y^12 + 316*y^11 - 23716*y^10 - 10472*y^9 + 82962*y^8 + 101090*y^7 - 82456*y^6 - 170368*y^5 - 12100*y^4 + 75504*y^3 + 37510*y^2 + 6776*y + 242, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^22 + 22*x^20 - 44*x^19 + 176*x^18 - 242*x^17 + 506*x^16 - 726*x^15 + 528*x^14 - 5214*x^13 + 3894*x^12 + 316*x^11 - 23716*x^10 - 10472*x^9 + 82962*x^8 + 101090*x^7 - 82456*x^6 - 170368*x^5 - 12100*x^4 + 75504*x^3 + 37510*x^2 + 6776*x + 242);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^22 + 22*x^20 - 44*x^19 + 176*x^18 - 242*x^17 + 506*x^16 - 726*x^15 + 528*x^14 - 5214*x^13 + 3894*x^12 + 316*x^11 - 23716*x^10 - 10472*x^9 + 82962*x^8 + 101090*x^7 - 82456*x^6 - 170368*x^5 - 12100*x^4 + 75504*x^3 + 37510*x^2 + 6776*x + 242)
 

\( x^{22} + 22 x^{20} - 44 x^{19} + 176 x^{18} - 242 x^{17} + 506 x^{16} - 726 x^{15} + 528 x^{14} + \cdots + 242 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $22$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[6, 8]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(6172475179135960522642404800603172634624\) \(\medspace = 2^{28}\cdot 7^{10}\cdot 11^{22}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(64.37\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  not computed
Ramified primes:   \(2\), \(7\), \(11\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $2$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{11}a^{17}-\frac{3}{11}a^{6}$, $\frac{1}{11}a^{18}-\frac{3}{11}a^{7}$, $\frac{1}{11}a^{19}-\frac{3}{11}a^{8}$, $\frac{1}{11}a^{20}-\frac{3}{11}a^{9}$, $\frac{1}{17\!\cdots\!23}a^{21}-\frac{28\!\cdots\!73}{17\!\cdots\!23}a^{20}-\frac{35\!\cdots\!49}{17\!\cdots\!23}a^{19}+\frac{43\!\cdots\!55}{17\!\cdots\!23}a^{18}-\frac{70\!\cdots\!03}{17\!\cdots\!23}a^{17}-\frac{43\!\cdots\!27}{15\!\cdots\!93}a^{16}+\frac{73\!\cdots\!67}{15\!\cdots\!93}a^{15}-\frac{63\!\cdots\!74}{15\!\cdots\!93}a^{14}+\frac{47\!\cdots\!75}{15\!\cdots\!93}a^{13}-\frac{11\!\cdots\!05}{15\!\cdots\!93}a^{12}-\frac{41\!\cdots\!68}{15\!\cdots\!93}a^{11}+\frac{38\!\cdots\!51}{17\!\cdots\!23}a^{10}-\frac{17\!\cdots\!06}{17\!\cdots\!23}a^{9}-\frac{66\!\cdots\!67}{17\!\cdots\!23}a^{8}-\frac{10\!\cdots\!29}{17\!\cdots\!23}a^{7}+\frac{68\!\cdots\!90}{17\!\cdots\!23}a^{6}+\frac{36\!\cdots\!70}{15\!\cdots\!93}a^{5}-\frac{75\!\cdots\!07}{15\!\cdots\!93}a^{4}+\frac{26\!\cdots\!53}{15\!\cdots\!93}a^{3}-\frac{42\!\cdots\!81}{15\!\cdots\!93}a^{2}-\frac{61\!\cdots\!20}{15\!\cdots\!93}a-\frac{18\!\cdots\!59}{15\!\cdots\!93}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $13$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{12\!\cdots\!08}{17\!\cdots\!23}a^{21}-\frac{10\!\cdots\!18}{17\!\cdots\!23}a^{20}+\frac{28\!\cdots\!54}{17\!\cdots\!23}a^{19}-\frac{78\!\cdots\!25}{17\!\cdots\!23}a^{18}+\frac{27\!\cdots\!04}{17\!\cdots\!23}a^{17}-\frac{47\!\cdots\!95}{15\!\cdots\!93}a^{16}+\frac{91\!\cdots\!28}{15\!\cdots\!93}a^{15}-\frac{15\!\cdots\!37}{15\!\cdots\!93}a^{14}+\frac{16\!\cdots\!94}{15\!\cdots\!93}a^{13}-\frac{70\!\cdots\!79}{15\!\cdots\!93}a^{12}+\frac{99\!\cdots\!32}{15\!\cdots\!93}a^{11}-\frac{68\!\cdots\!40}{17\!\cdots\!23}a^{10}-\frac{25\!\cdots\!63}{17\!\cdots\!23}a^{9}+\frac{95\!\cdots\!14}{17\!\cdots\!23}a^{8}+\frac{10\!\cdots\!60}{17\!\cdots\!23}a^{7}+\frac{48\!\cdots\!02}{17\!\cdots\!23}a^{6}-\frac{14\!\cdots\!42}{15\!\cdots\!93}a^{5}-\frac{98\!\cdots\!49}{15\!\cdots\!93}a^{4}+\frac{67\!\cdots\!58}{15\!\cdots\!93}a^{3}+\frac{47\!\cdots\!61}{15\!\cdots\!93}a^{2}+\frac{11\!\cdots\!90}{15\!\cdots\!93}a+\frac{61\!\cdots\!77}{15\!\cdots\!93}$, $\frac{35\!\cdots\!12}{17\!\cdots\!23}a^{21}-\frac{57\!\cdots\!85}{17\!\cdots\!23}a^{20}+\frac{76\!\cdots\!82}{17\!\cdots\!23}a^{19}-\frac{28\!\cdots\!33}{17\!\cdots\!23}a^{18}+\frac{83\!\cdots\!40}{17\!\cdots\!23}a^{17}-\frac{17\!\cdots\!94}{15\!\cdots\!93}a^{16}+\frac{28\!\cdots\!60}{15\!\cdots\!93}a^{15}-\frac{56\!\cdots\!67}{15\!\cdots\!93}a^{14}+\frac{58\!\cdots\!56}{15\!\cdots\!93}a^{13}-\frac{22\!\cdots\!04}{15\!\cdots\!93}a^{12}+\frac{42\!\cdots\!76}{15\!\cdots\!93}a^{11}-\frac{18\!\cdots\!38}{17\!\cdots\!23}a^{10}-\frac{57\!\cdots\!73}{17\!\cdots\!23}a^{9}+\frac{84\!\cdots\!72}{17\!\cdots\!23}a^{8}+\frac{41\!\cdots\!60}{17\!\cdots\!23}a^{7}+\frac{35\!\cdots\!92}{17\!\cdots\!23}a^{6}-\frac{76\!\cdots\!16}{15\!\cdots\!93}a^{5}-\frac{50\!\cdots\!73}{15\!\cdots\!93}a^{4}+\frac{40\!\cdots\!94}{15\!\cdots\!93}a^{3}+\frac{36\!\cdots\!41}{15\!\cdots\!93}a^{2}+\frac{11\!\cdots\!82}{15\!\cdots\!93}a+\frac{11\!\cdots\!65}{15\!\cdots\!93}$, $\frac{39\!\cdots\!81}{10\!\cdots\!19}a^{21}+\frac{11\!\cdots\!01}{10\!\cdots\!19}a^{20}+\frac{13\!\cdots\!35}{10\!\cdots\!19}a^{19}+\frac{10\!\cdots\!90}{10\!\cdots\!19}a^{18}+\frac{14\!\cdots\!72}{10\!\cdots\!19}a^{17}-\frac{55\!\cdots\!14}{91\!\cdots\!29}a^{16}+\frac{77\!\cdots\!31}{91\!\cdots\!29}a^{15}-\frac{52\!\cdots\!62}{91\!\cdots\!29}a^{14}+\frac{19\!\cdots\!60}{91\!\cdots\!29}a^{13}-\frac{38\!\cdots\!55}{91\!\cdots\!29}a^{12}-\frac{12\!\cdots\!96}{91\!\cdots\!29}a^{11}-\frac{23\!\cdots\!54}{10\!\cdots\!19}a^{10}-\frac{30\!\cdots\!11}{10\!\cdots\!19}a^{9}-\frac{42\!\cdots\!11}{10\!\cdots\!19}a^{8}-\frac{10\!\cdots\!52}{10\!\cdots\!19}a^{7}-\frac{92\!\cdots\!50}{10\!\cdots\!19}a^{6}+\frac{32\!\cdots\!02}{91\!\cdots\!29}a^{5}+\frac{42\!\cdots\!01}{91\!\cdots\!29}a^{4}-\frac{68\!\cdots\!64}{91\!\cdots\!29}a^{3}-\frac{40\!\cdots\!57}{91\!\cdots\!29}a^{2}-\frac{18\!\cdots\!46}{91\!\cdots\!29}a-\frac{30\!\cdots\!95}{91\!\cdots\!29}$, $\frac{69\!\cdots\!59}{17\!\cdots\!23}a^{21}-\frac{26\!\cdots\!75}{17\!\cdots\!23}a^{20}+\frac{14\!\cdots\!52}{15\!\cdots\!93}a^{19}-\frac{36\!\cdots\!74}{17\!\cdots\!23}a^{18}+\frac{14\!\cdots\!18}{17\!\cdots\!23}a^{17}-\frac{21\!\cdots\!16}{15\!\cdots\!93}a^{16}+\frac{46\!\cdots\!48}{15\!\cdots\!93}a^{15}-\frac{69\!\cdots\!84}{15\!\cdots\!93}a^{14}+\frac{79\!\cdots\!62}{15\!\cdots\!93}a^{13}-\frac{37\!\cdots\!86}{15\!\cdots\!93}a^{12}+\frac{41\!\cdots\!78}{15\!\cdots\!93}a^{11}-\frac{35\!\cdots\!98}{17\!\cdots\!23}a^{10}-\frac{14\!\cdots\!41}{17\!\cdots\!23}a^{9}-\frac{24\!\cdots\!02}{15\!\cdots\!93}a^{8}+\frac{49\!\cdots\!64}{17\!\cdots\!23}a^{7}+\frac{40\!\cdots\!50}{17\!\cdots\!23}a^{6}-\frac{48\!\cdots\!64}{15\!\cdots\!93}a^{5}-\frac{49\!\cdots\!55}{15\!\cdots\!93}a^{4}+\frac{18\!\cdots\!48}{15\!\cdots\!93}a^{3}+\frac{12\!\cdots\!17}{15\!\cdots\!93}a^{2}+\frac{17\!\cdots\!30}{15\!\cdots\!93}a-\frac{28\!\cdots\!45}{15\!\cdots\!93}$, $\frac{67\!\cdots\!05}{10\!\cdots\!19}a^{21}-\frac{10\!\cdots\!76}{91\!\cdots\!29}a^{20}+\frac{14\!\cdots\!34}{10\!\cdots\!19}a^{19}-\frac{32\!\cdots\!10}{10\!\cdots\!19}a^{18}+\frac{12\!\cdots\!96}{10\!\cdots\!19}a^{17}-\frac{17\!\cdots\!69}{91\!\cdots\!29}a^{16}+\frac{34\!\cdots\!47}{91\!\cdots\!29}a^{15}-\frac{52\!\cdots\!84}{91\!\cdots\!29}a^{14}+\frac{43\!\cdots\!23}{91\!\cdots\!29}a^{13}-\frac{33\!\cdots\!50}{91\!\cdots\!29}a^{12}+\frac{30\!\cdots\!38}{91\!\cdots\!29}a^{11}-\frac{37\!\cdots\!06}{10\!\cdots\!19}a^{10}-\frac{14\!\cdots\!99}{91\!\cdots\!29}a^{9}-\frac{48\!\cdots\!45}{10\!\cdots\!19}a^{8}+\frac{57\!\cdots\!52}{10\!\cdots\!19}a^{7}+\frac{62\!\cdots\!03}{10\!\cdots\!19}a^{6}-\frac{59\!\cdots\!00}{91\!\cdots\!29}a^{5}-\frac{10\!\cdots\!15}{91\!\cdots\!29}a^{4}+\frac{22\!\cdots\!56}{91\!\cdots\!29}a^{3}+\frac{50\!\cdots\!99}{91\!\cdots\!29}a^{2}+\frac{22\!\cdots\!64}{91\!\cdots\!29}a+\frac{36\!\cdots\!33}{91\!\cdots\!29}$, $\frac{26\!\cdots\!54}{10\!\cdots\!19}a^{21}-\frac{15\!\cdots\!52}{10\!\cdots\!19}a^{20}+\frac{58\!\cdots\!26}{10\!\cdots\!19}a^{19}-\frac{15\!\cdots\!47}{10\!\cdots\!19}a^{18}+\frac{53\!\cdots\!23}{10\!\cdots\!19}a^{17}-\frac{85\!\cdots\!12}{91\!\cdots\!29}a^{16}+\frac{15\!\cdots\!54}{91\!\cdots\!29}a^{15}-\frac{26\!\cdots\!18}{91\!\cdots\!29}a^{14}+\frac{23\!\cdots\!46}{91\!\cdots\!29}a^{13}-\frac{13\!\cdots\!60}{91\!\cdots\!29}a^{12}+\frac{17\!\cdots\!64}{91\!\cdots\!29}a^{11}-\frac{43\!\cdots\!51}{10\!\cdots\!19}a^{10}-\frac{57\!\cdots\!40}{10\!\cdots\!19}a^{9}+\frac{73\!\cdots\!86}{10\!\cdots\!19}a^{8}+\frac{25\!\cdots\!88}{10\!\cdots\!19}a^{7}+\frac{17\!\cdots\!18}{10\!\cdots\!19}a^{6}-\frac{34\!\cdots\!38}{91\!\cdots\!29}a^{5}-\frac{39\!\cdots\!49}{91\!\cdots\!29}a^{4}+\frac{98\!\cdots\!14}{91\!\cdots\!29}a^{3}+\frac{23\!\cdots\!14}{91\!\cdots\!29}a^{2}+\frac{90\!\cdots\!18}{91\!\cdots\!29}a+\frac{12\!\cdots\!51}{91\!\cdots\!29}$, $\frac{36\!\cdots\!16}{10\!\cdots\!19}a^{21}+\frac{40\!\cdots\!15}{10\!\cdots\!19}a^{20}+\frac{80\!\cdots\!79}{10\!\cdots\!19}a^{19}-\frac{15\!\cdots\!50}{10\!\cdots\!19}a^{18}+\frac{64\!\cdots\!33}{10\!\cdots\!19}a^{17}-\frac{80\!\cdots\!94}{91\!\cdots\!29}a^{16}+\frac{18\!\cdots\!43}{91\!\cdots\!29}a^{15}-\frac{27\!\cdots\!01}{91\!\cdots\!29}a^{14}+\frac{27\!\cdots\!56}{91\!\cdots\!29}a^{13}-\frac{19\!\cdots\!73}{91\!\cdots\!29}a^{12}+\frac{14\!\cdots\!22}{91\!\cdots\!29}a^{11}-\frac{56\!\cdots\!95}{10\!\cdots\!19}a^{10}-\frac{70\!\cdots\!85}{10\!\cdots\!19}a^{9}-\frac{69\!\cdots\!18}{10\!\cdots\!19}a^{8}+\frac{30\!\cdots\!06}{10\!\cdots\!19}a^{7}+\frac{41\!\cdots\!02}{10\!\cdots\!19}a^{6}-\frac{19\!\cdots\!14}{91\!\cdots\!29}a^{5}-\frac{63\!\cdots\!07}{91\!\cdots\!29}a^{4}-\frac{17\!\cdots\!14}{91\!\cdots\!29}a^{3}+\frac{31\!\cdots\!25}{91\!\cdots\!29}a^{2}+\frac{17\!\cdots\!16}{91\!\cdots\!29}a+\frac{91\!\cdots\!17}{91\!\cdots\!29}$, $\frac{36\!\cdots\!25}{17\!\cdots\!23}a^{21}-\frac{50\!\cdots\!55}{17\!\cdots\!23}a^{20}+\frac{81\!\cdots\!16}{17\!\cdots\!23}a^{19}-\frac{17\!\cdots\!29}{17\!\cdots\!23}a^{18}+\frac{68\!\cdots\!91}{17\!\cdots\!23}a^{17}-\frac{90\!\cdots\!63}{15\!\cdots\!93}a^{16}+\frac{19\!\cdots\!10}{15\!\cdots\!93}a^{15}-\frac{27\!\cdots\!54}{15\!\cdots\!93}a^{14}+\frac{24\!\cdots\!99}{15\!\cdots\!93}a^{13}-\frac{17\!\cdots\!37}{15\!\cdots\!93}a^{12}+\frac{15\!\cdots\!36}{15\!\cdots\!93}a^{11}-\frac{52\!\cdots\!99}{17\!\cdots\!23}a^{10}-\frac{85\!\cdots\!63}{17\!\cdots\!23}a^{9}-\frac{27\!\cdots\!07}{17\!\cdots\!23}a^{8}+\frac{28\!\cdots\!60}{17\!\cdots\!23}a^{7}+\frac{30\!\cdots\!21}{17\!\cdots\!23}a^{6}-\frac{27\!\cdots\!26}{15\!\cdots\!93}a^{5}-\frac{43\!\cdots\!66}{15\!\cdots\!93}a^{4}+\frac{52\!\cdots\!94}{15\!\cdots\!93}a^{3}+\frac{18\!\cdots\!39}{15\!\cdots\!93}a^{2}+\frac{46\!\cdots\!04}{15\!\cdots\!93}a+\frac{30\!\cdots\!15}{15\!\cdots\!93}$, $\frac{18\!\cdots\!50}{17\!\cdots\!23}a^{21}+\frac{24\!\cdots\!89}{17\!\cdots\!23}a^{20}+\frac{42\!\cdots\!20}{17\!\cdots\!23}a^{19}-\frac{22\!\cdots\!26}{17\!\cdots\!23}a^{18}+\frac{26\!\cdots\!66}{17\!\cdots\!23}a^{17}-\frac{35\!\cdots\!59}{15\!\cdots\!93}a^{16}+\frac{62\!\cdots\!11}{15\!\cdots\!93}a^{15}-\frac{14\!\cdots\!61}{15\!\cdots\!93}a^{14}+\frac{16\!\cdots\!03}{15\!\cdots\!93}a^{13}-\frac{77\!\cdots\!35}{15\!\cdots\!93}a^{12}-\frac{46\!\cdots\!24}{15\!\cdots\!93}a^{11}-\frac{14\!\cdots\!99}{17\!\cdots\!23}a^{10}-\frac{47\!\cdots\!58}{17\!\cdots\!23}a^{9}-\frac{82\!\cdots\!72}{17\!\cdots\!23}a^{8}+\frac{65\!\cdots\!26}{17\!\cdots\!23}a^{7}+\frac{28\!\cdots\!21}{17\!\cdots\!23}a^{6}+\frac{15\!\cdots\!18}{15\!\cdots\!93}a^{5}-\frac{14\!\cdots\!50}{15\!\cdots\!93}a^{4}-\frac{18\!\cdots\!32}{15\!\cdots\!93}a^{3}-\frac{50\!\cdots\!48}{15\!\cdots\!93}a^{2}-\frac{20\!\cdots\!36}{15\!\cdots\!93}a+\frac{11\!\cdots\!69}{15\!\cdots\!93}$, $\frac{22\!\cdots\!33}{10\!\cdots\!19}a^{21}+\frac{20\!\cdots\!19}{10\!\cdots\!19}a^{20}+\frac{46\!\cdots\!75}{10\!\cdots\!19}a^{19}-\frac{52\!\cdots\!55}{10\!\cdots\!19}a^{18}+\frac{24\!\cdots\!38}{10\!\cdots\!19}a^{17}-\frac{28\!\cdots\!80}{91\!\cdots\!29}a^{16}+\frac{36\!\cdots\!45}{91\!\cdots\!29}a^{15}+\frac{39\!\cdots\!32}{91\!\cdots\!29}a^{14}-\frac{23\!\cdots\!28}{91\!\cdots\!29}a^{13}-\frac{64\!\cdots\!62}{91\!\cdots\!29}a^{12}-\frac{57\!\cdots\!24}{91\!\cdots\!29}a^{11}+\frac{27\!\cdots\!34}{10\!\cdots\!19}a^{10}-\frac{74\!\cdots\!63}{10\!\cdots\!19}a^{9}-\frac{53\!\cdots\!09}{10\!\cdots\!19}a^{8}+\frac{21\!\cdots\!76}{10\!\cdots\!19}a^{7}+\frac{41\!\cdots\!60}{10\!\cdots\!19}a^{6}-\frac{16\!\cdots\!66}{91\!\cdots\!29}a^{5}-\frac{66\!\cdots\!48}{91\!\cdots\!29}a^{4}-\frac{14\!\cdots\!16}{91\!\cdots\!29}a^{3}+\frac{34\!\cdots\!59}{91\!\cdots\!29}a^{2}+\frac{17\!\cdots\!62}{91\!\cdots\!29}a+\frac{13\!\cdots\!77}{91\!\cdots\!29}$, $\frac{28\!\cdots\!01}{17\!\cdots\!23}a^{21}+\frac{34\!\cdots\!21}{17\!\cdots\!23}a^{20}+\frac{66\!\cdots\!34}{17\!\cdots\!23}a^{19}-\frac{45\!\cdots\!62}{17\!\cdots\!23}a^{18}+\frac{44\!\cdots\!52}{17\!\cdots\!23}a^{17}-\frac{13\!\cdots\!12}{15\!\cdots\!93}a^{16}+\frac{11\!\cdots\!10}{15\!\cdots\!93}a^{15}-\frac{51\!\cdots\!86}{15\!\cdots\!93}a^{14}+\frac{65\!\cdots\!77}{15\!\cdots\!93}a^{13}-\frac{12\!\cdots\!33}{15\!\cdots\!93}a^{12}-\frac{51\!\cdots\!46}{15\!\cdots\!93}a^{11}-\frac{49\!\cdots\!22}{17\!\cdots\!23}a^{10}-\frac{73\!\cdots\!12}{17\!\cdots\!23}a^{9}-\frac{11\!\cdots\!28}{17\!\cdots\!23}a^{8}+\frac{99\!\cdots\!61}{17\!\cdots\!23}a^{7}+\frac{41\!\cdots\!74}{17\!\cdots\!23}a^{6}+\frac{22\!\cdots\!66}{15\!\cdots\!93}a^{5}-\frac{18\!\cdots\!52}{15\!\cdots\!93}a^{4}-\frac{26\!\cdots\!24}{15\!\cdots\!93}a^{3}-\frac{10\!\cdots\!80}{15\!\cdots\!93}a^{2}-\frac{16\!\cdots\!58}{15\!\cdots\!93}a-\frac{54\!\cdots\!47}{15\!\cdots\!93}$, $\frac{16\!\cdots\!05}{15\!\cdots\!93}a^{21}-\frac{13\!\cdots\!53}{17\!\cdots\!23}a^{20}+\frac{40\!\cdots\!96}{17\!\cdots\!23}a^{19}-\frac{11\!\cdots\!92}{17\!\cdots\!23}a^{18}+\frac{39\!\cdots\!32}{17\!\cdots\!23}a^{17}-\frac{66\!\cdots\!28}{15\!\cdots\!93}a^{16}+\frac{13\!\cdots\!82}{15\!\cdots\!93}a^{15}-\frac{21\!\cdots\!95}{15\!\cdots\!93}a^{14}+\frac{23\!\cdots\!59}{15\!\cdots\!93}a^{13}-\frac{10\!\cdots\!72}{15\!\cdots\!93}a^{12}+\frac{13\!\cdots\!73}{15\!\cdots\!93}a^{11}-\frac{93\!\cdots\!47}{15\!\cdots\!93}a^{10}-\frac{36\!\cdots\!02}{17\!\cdots\!23}a^{9}+\frac{90\!\cdots\!92}{17\!\cdots\!23}a^{8}+\frac{14\!\cdots\!01}{17\!\cdots\!23}a^{7}+\frac{72\!\cdots\!67}{17\!\cdots\!23}a^{6}-\frac{19\!\cdots\!48}{15\!\cdots\!93}a^{5}-\frac{13\!\cdots\!47}{15\!\cdots\!93}a^{4}+\frac{97\!\cdots\!36}{15\!\cdots\!93}a^{3}+\frac{60\!\cdots\!92}{15\!\cdots\!93}a^{2}+\frac{98\!\cdots\!79}{15\!\cdots\!93}a-\frac{64\!\cdots\!03}{15\!\cdots\!93}$, $\frac{45\!\cdots\!49}{15\!\cdots\!93}a^{21}-\frac{23\!\cdots\!93}{17\!\cdots\!23}a^{20}+\frac{11\!\cdots\!46}{17\!\cdots\!23}a^{19}-\frac{22\!\cdots\!75}{17\!\cdots\!23}a^{18}+\frac{89\!\cdots\!36}{17\!\cdots\!23}a^{17}-\frac{11\!\cdots\!66}{15\!\cdots\!93}a^{16}+\frac{23\!\cdots\!55}{15\!\cdots\!93}a^{15}-\frac{34\!\cdots\!39}{15\!\cdots\!93}a^{14}+\frac{25\!\cdots\!67}{15\!\cdots\!93}a^{13}-\frac{23\!\cdots\!37}{15\!\cdots\!93}a^{12}+\frac{18\!\cdots\!64}{15\!\cdots\!93}a^{11}+\frac{56\!\cdots\!80}{15\!\cdots\!93}a^{10}-\frac{11\!\cdots\!45}{17\!\cdots\!23}a^{9}-\frac{47\!\cdots\!36}{17\!\cdots\!23}a^{8}+\frac{41\!\cdots\!52}{17\!\cdots\!23}a^{7}+\frac{48\!\cdots\!67}{17\!\cdots\!23}a^{6}-\frac{39\!\cdots\!85}{15\!\cdots\!93}a^{5}-\frac{76\!\cdots\!21}{15\!\cdots\!93}a^{4}-\frac{19\!\cdots\!55}{15\!\cdots\!93}a^{3}+\frac{34\!\cdots\!55}{15\!\cdots\!93}a^{2}+\frac{15\!\cdots\!65}{15\!\cdots\!93}a+\frac{23\!\cdots\!91}{15\!\cdots\!93}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 629593387255 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{6}\cdot(2\pi)^{8}\cdot 629593387255 \cdot 1}{2\cdot\sqrt{6172475179135960522642404800603172634624}}\cr\approx \mathstrut & 0.622901543425920 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^22 + 22*x^20 - 44*x^19 + 176*x^18 - 242*x^17 + 506*x^16 - 726*x^15 + 528*x^14 - 5214*x^13 + 3894*x^12 + 316*x^11 - 23716*x^10 - 10472*x^9 + 82962*x^8 + 101090*x^7 - 82456*x^6 - 170368*x^5 - 12100*x^4 + 75504*x^3 + 37510*x^2 + 6776*x + 242)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^22 + 22*x^20 - 44*x^19 + 176*x^18 - 242*x^17 + 506*x^16 - 726*x^15 + 528*x^14 - 5214*x^13 + 3894*x^12 + 316*x^11 - 23716*x^10 - 10472*x^9 + 82962*x^8 + 101090*x^7 - 82456*x^6 - 170368*x^5 - 12100*x^4 + 75504*x^3 + 37510*x^2 + 6776*x + 242, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^22 + 22*x^20 - 44*x^19 + 176*x^18 - 242*x^17 + 506*x^16 - 726*x^15 + 528*x^14 - 5214*x^13 + 3894*x^12 + 316*x^11 - 23716*x^10 - 10472*x^9 + 82962*x^8 + 101090*x^7 - 82456*x^6 - 170368*x^5 - 12100*x^4 + 75504*x^3 + 37510*x^2 + 6776*x + 242);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^22 + 22*x^20 - 44*x^19 + 176*x^18 - 242*x^17 + 506*x^16 - 726*x^15 + 528*x^14 - 5214*x^13 + 3894*x^12 + 316*x^11 - 23716*x^10 - 10472*x^9 + 82962*x^8 + 101090*x^7 - 82456*x^6 - 170368*x^5 - 12100*x^4 + 75504*x^3 + 37510*x^2 + 6776*x + 242);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2^{10}.F_{11}$ (as 22T34):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 112640
The 44 conjugacy class representatives for $C_2^{10}.F_{11}$
Character table for $C_2^{10}.F_{11}$ is not computed

Intermediate fields

11.11.4910318845910094848.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 22 sibling: data not computed
Degree 44 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R $20{,}\,{\href{/padicField/3.2.0.1}{2} }$ $20{,}\,{\href{/padicField/5.2.0.1}{2} }$ R R ${\href{/padicField/13.10.0.1}{10} }{,}\,{\href{/padicField/13.5.0.1}{5} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }$ ${\href{/padicField/17.10.0.1}{10} }{,}\,{\href{/padicField/17.5.0.1}{5} }^{2}{,}\,{\href{/padicField/17.2.0.1}{2} }$ ${\href{/padicField/19.10.0.1}{10} }{,}\,{\href{/padicField/19.5.0.1}{5} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }$ ${\href{/padicField/23.11.0.1}{11} }^{2}$ ${\href{/padicField/29.10.0.1}{10} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ ${\href{/padicField/31.10.0.1}{10} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ ${\href{/padicField/37.10.0.1}{10} }{,}\,{\href{/padicField/37.5.0.1}{5} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }$ ${\href{/padicField/41.10.0.1}{10} }{,}\,{\href{/padicField/41.5.0.1}{5} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }$ ${\href{/padicField/43.4.0.1}{4} }^{3}{,}\,{\href{/padicField/43.2.0.1}{2} }^{5}$ $20{,}\,{\href{/padicField/47.2.0.1}{2} }$ ${\href{/padicField/53.5.0.1}{5} }^{4}{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ ${\href{/padicField/59.10.0.1}{10} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display Deg $22$$22$$1$$28$
\(7\) Copy content Toggle raw display $\Q_{7}$$x + 4$$1$$1$$0$Trivial$[\ ]$
$\Q_{7}$$x + 4$$1$$1$$0$Trivial$[\ ]$
7.10.5.1$x^{10} + 2401 x^{2} - 67228$$2$$5$$5$$C_{10}$$[\ ]_{2}^{5}$
7.10.5.1$x^{10} + 2401 x^{2} - 67228$$2$$5$$5$$C_{10}$$[\ ]_{2}^{5}$
\(11\) Copy content Toggle raw display 11.11.11.6$x^{11} + 11 x + 11$$11$$1$$11$$F_{11}$$[11/10]_{10}$
11.11.11.6$x^{11} + 11 x + 11$$11$$1$$11$$F_{11}$$[11/10]_{10}$