Normalized defining polynomial
\( x^{22} - 2 x^{21} + 5 x^{20} + 14 x^{19} - 14 x^{18} + 142 x^{17} - 5 x^{16} + 272 x^{15} + 173 x^{14} + 218 x^{13} + 72 x^{12} + 64 x^{11} - 24 x^{10} - 523 x^{9} - 90 x^{8} - 459 x^{7} + 102 x^{6} - 56 x^{5} + 85 x^{4} + 4 x^{3} + 7 x^{2} - 4 x - 1 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6168460699614248235671671923828125=5^{11}\cdot 1831^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $34.35$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 1831$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{47} a^{20} + \frac{12}{47} a^{19} - \frac{7}{47} a^{18} + \frac{12}{47} a^{17} + \frac{4}{47} a^{16} + \frac{12}{47} a^{15} + \frac{7}{47} a^{14} - \frac{4}{47} a^{13} - \frac{15}{47} a^{12} + \frac{23}{47} a^{11} - \frac{8}{47} a^{10} - \frac{5}{47} a^{9} - \frac{17}{47} a^{8} - \frac{2}{47} a^{7} - \frac{19}{47} a^{6} + \frac{11}{47} a^{5} + \frac{10}{47} a^{4} - \frac{16}{47} a^{3} - \frac{12}{47} a^{2} - \frac{10}{47} a + \frac{6}{47}$, $\frac{1}{101581987079819159741470267} a^{21} + \frac{383962489179151977598761}{101581987079819159741470267} a^{20} - \frac{33023377970524802639988353}{101581987079819159741470267} a^{19} + \frac{33889026890443552308413869}{101581987079819159741470267} a^{18} + \frac{22654489864168760744877631}{101581987079819159741470267} a^{17} - \frac{38185108264066552545843402}{101581987079819159741470267} a^{16} + \frac{3165538680794952814968734}{101581987079819159741470267} a^{15} - \frac{36041572542037962953121919}{101581987079819159741470267} a^{14} + \frac{42576954608990110084476203}{101581987079819159741470267} a^{13} + \frac{15710103842316891145999739}{101581987079819159741470267} a^{12} - \frac{16289626381383339937472687}{101581987079819159741470267} a^{11} - \frac{5496122526804980434940662}{101581987079819159741470267} a^{10} + \frac{37162512315119568454840333}{101581987079819159741470267} a^{9} - \frac{3540368379286097421618202}{101581987079819159741470267} a^{8} + \frac{15311997519859427907881628}{101581987079819159741470267} a^{7} - \frac{13068995704834252600688603}{101581987079819159741470267} a^{6} + \frac{33104028772245654734585148}{101581987079819159741470267} a^{5} + \frac{10542750634584345762230533}{101581987079819159741470267} a^{4} + \frac{32552623596314552708376259}{101581987079819159741470267} a^{3} - \frac{29323902608197723902278591}{101581987079819159741470267} a^{2} + \frac{23482558155172561748135134}{101581987079819159741470267} a - \frac{44864396837923022862842708}{101581987079819159741470267}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 185058540.947 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1320 |
| The 16 conjugacy class representatives for t22n13 |
| Character table for t22n13 |
Intermediate fields
| \(\Q(\sqrt{5}) \), 11.3.11239665258721.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 24 sibling: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $22$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/59.11.0.1}{11} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 1831 | Data not computed | ||||||