Normalized defining polynomial
\( x^{22} - 4 x^{21} - 16 x^{20} + 120 x^{19} + 115 x^{18} - 1424 x^{17} - 504 x^{16} + 14264 x^{15} - 26035 x^{14} - 18220 x^{13} + 156506 x^{12} - 302224 x^{11} + 301914 x^{10} - 196640 x^{9} + 146020 x^{8} + 7356 x^{7} - 682924 x^{6} + 1599944 x^{5} - 1573820 x^{4} + 564960 x^{3} + 82836 x^{2} - 91944 x + 21744 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5380840125000000000000000000000000000000000000=2^{36}\cdot 3^{16}\cdot 5^{39}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $119.86$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{15} a^{11} - \frac{2}{15} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{2}{15} a^{6} - \frac{1}{15} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{2}{5} a + \frac{1}{5}$, $\frac{1}{75} a^{12} + \frac{1}{75} a^{11} - \frac{16}{75} a^{10} + \frac{2}{15} a^{9} + \frac{4}{15} a^{8} + \frac{13}{75} a^{7} - \frac{37}{75} a^{6} + \frac{7}{75} a^{5} - \frac{2}{15} a^{4} + \frac{1}{15} a^{3} + \frac{2}{25} a^{2} + \frac{2}{25} a - \frac{12}{25}$, $\frac{1}{75} a^{13} - \frac{2}{75} a^{11} - \frac{4}{75} a^{10} + \frac{2}{15} a^{9} - \frac{7}{75} a^{8} + \frac{1}{3} a^{7} + \frac{14}{75} a^{6} - \frac{32}{75} a^{5} + \frac{1}{5} a^{4} + \frac{1}{75} a^{3} - \frac{9}{25} a + \frac{2}{25}$, $\frac{1}{150} a^{14} - \frac{1}{75} a^{11} + \frac{53}{150} a^{10} - \frac{31}{75} a^{9} - \frac{1}{15} a^{8} + \frac{4}{15} a^{7} - \frac{31}{150} a^{6} - \frac{23}{75} a^{5} + \frac{28}{75} a^{4} + \frac{1}{15} a^{3} + \frac{2}{5} a^{2} + \frac{3}{25} a - \frac{12}{25}$, $\frac{1}{150} a^{15} - \frac{1}{30} a^{11} + \frac{13}{75} a^{10} + \frac{1}{15} a^{9} - \frac{7}{15} a^{8} - \frac{1}{30} a^{7} - \frac{2}{15} a^{5} - \frac{1}{15} a^{4} + \frac{7}{15} a^{3} + \frac{1}{5} a^{2} + \frac{1}{5} a + \frac{8}{25}$, $\frac{1}{150} a^{16} - \frac{1}{150} a^{12} + \frac{1}{25} a^{10} - \frac{1}{5} a^{9} - \frac{1}{2} a^{8} + \frac{26}{75} a^{7} + \frac{7}{25} a^{6} + \frac{8}{25} a^{5} + \frac{1}{5} a^{4} + \frac{1}{3} a^{3} + \frac{9}{25} a^{2} + \frac{7}{25} a + \frac{11}{25}$, $\frac{1}{150} a^{17} - \frac{1}{150} a^{13} - \frac{2}{75} a^{11} - \frac{1}{15} a^{10} + \frac{1}{6} a^{9} - \frac{8}{25} a^{8} - \frac{4}{75} a^{7} + \frac{34}{75} a^{6} + \frac{4}{15} a^{5} - \frac{1}{3} a^{4} + \frac{2}{75} a^{3} - \frac{4}{75} a^{2} + \frac{1}{25} a - \frac{1}{5}$, $\frac{1}{300} a^{18} - \frac{1}{300} a^{14} - \frac{1}{150} a^{12} - \frac{2}{75} a^{11} - \frac{7}{300} a^{10} - \frac{7}{75} a^{9} + \frac{8}{75} a^{8} - \frac{14}{75} a^{7} - \frac{17}{150} a^{6} - \frac{3}{25} a^{5} + \frac{67}{150} a^{4} - \frac{37}{75} a^{3} - \frac{11}{25} a^{2} + \frac{11}{25} a - \frac{6}{25}$, $\frac{1}{4500} a^{19} + \frac{1}{1125} a^{18} + \frac{2}{1125} a^{17} - \frac{1}{375} a^{16} - \frac{11}{4500} a^{15} + \frac{1}{2250} a^{14} - \frac{11}{2250} a^{13} - \frac{2}{375} a^{12} - \frac{1}{500} a^{11} - \frac{511}{2250} a^{10} + \frac{472}{1125} a^{9} + \frac{203}{1125} a^{8} + \frac{82}{375} a^{7} - \frac{43}{2250} a^{6} - \frac{59}{2250} a^{5} - \frac{529}{1125} a^{4} - \frac{112}{375} a^{3} - \frac{14}{375} a^{2} + \frac{37}{125} a - \frac{9}{125}$, $\frac{1}{1381500} a^{20} + \frac{1}{92100} a^{19} - \frac{272}{345375} a^{18} - \frac{326}{345375} a^{17} - \frac{1583}{1381500} a^{16} + \frac{1021}{1381500} a^{15} - \frac{19}{9210} a^{14} + \frac{4307}{690750} a^{13} - \frac{1651}{460500} a^{12} + \frac{27799}{1381500} a^{11} + \frac{17588}{115125} a^{10} - \frac{32701}{69075} a^{9} - \frac{18431}{345375} a^{8} + \frac{5369}{690750} a^{7} + \frac{203033}{690750} a^{6} + \frac{11547}{76750} a^{5} - \frac{27571}{69075} a^{4} + \frac{15929}{115125} a^{3} - \frac{8496}{38375} a^{2} - \frac{9862}{38375} a - \frac{14084}{38375}$, $\frac{1}{1494410049269831572409888496962919000} a^{21} - \frac{17602644872363490516082009969}{49813668308994385746996283232097300} a^{20} + \frac{710256076182184567314156888159}{41511390257495321455830236026747750} a^{19} - \frac{17839814991083991229332028464427}{83022780514990642911660472053495500} a^{18} - \frac{521950548458397263654991435363097}{1494410049269831572409888496962919000} a^{17} - \frac{1920896030273897287711831843360639}{747205024634915786204944248481459500} a^{16} - \frac{1173005161082901327318644940670243}{373602512317457893102472124240729750} a^{15} + \frac{2147110597914907500788452717485199}{747205024634915786204944248481459500} a^{14} - \frac{6198777011365414425207329184944687}{1494410049269831572409888496962919000} a^{13} + \frac{2529106593943920489785361031792643}{747205024634915786204944248481459500} a^{12} - \frac{5548548059535412110633970083653327}{249068341544971928734981416160486500} a^{11} + \frac{90827072405614957349040491780768461}{249068341544971928734981416160486500} a^{10} - \frac{33918708663708219817146163115284241}{83022780514990642911660472053495500} a^{9} - \frac{106253536401938609444162926198780747}{373602512317457893102472124240729750} a^{8} - \frac{14994129448969423890010298420339549}{373602512317457893102472124240729750} a^{7} - \frac{71789606933961185739188020589371097}{186801256158728946551236062120364875} a^{6} - \frac{154311305680819838146202064590157769}{373602512317457893102472124240729750} a^{5} + \frac{130314625188961805078945085844597729}{373602512317457893102472124240729750} a^{4} - \frac{54945661939869758720541706472799797}{124534170772485964367490708080243250} a^{3} + \frac{30451036045459674815309243929736068}{62267085386242982183745354040121625} a^{2} - \frac{121288753319514034728255841011007}{8302278051499064291166047205349550} a - \frac{5816414875501130139678923342212359}{20755695128747660727915118013373875}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 961054672237000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 15840 |
| The 20 conjugacy class representatives for t22n27 |
| Character table for t22n27 |
Intermediate fields
| \(\Q(\sqrt{5}) \), 11.3.6561000000000000000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 22 sibling: | data not computed |
| Degree 24 sibling: | data not computed |
| Degree 44 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | $22$ | ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | $22$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.8.16.9 | $x^{8} + 2 x^{4} + 8 x + 12$ | $4$ | $2$ | $16$ | $S_4$ | $[8/3, 8/3]_{3}^{2}$ | |
| 2.12.20.34 | $x^{12} + 14 x^{10} + 16 x^{8} - 8 x^{6} - 8 x^{4} + 16 x^{2} + 16$ | $6$ | $2$ | $20$ | $S_4$ | $[8/3, 8/3]_{3}^{2}$ | |
| 3 | Data not computed | ||||||
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.10.19.3 | $x^{10} + 30$ | $10$ | $1$ | $19$ | $F_5$ | $[9/4]_{4}$ | |
| 5.10.19.3 | $x^{10} + 30$ | $10$ | $1$ | $19$ | $F_5$ | $[9/4]_{4}$ | |