Normalized defining polynomial
\( x^{22} - 11 x^{21} + 57 x^{20} - 185 x^{19} + 100 x^{18} + 2178 x^{17} - 13698 x^{16} + 50526 x^{15} - 125595 x^{14} + 212645 x^{13} - 151135 x^{12} - 372585 x^{11} + 1599575 x^{10} - 3294265 x^{9} + 3873360 x^{8} - 1752654 x^{7} - 4272321 x^{6} + 11175117 x^{5} - 14948990 x^{4} + 12783910 x^{3} - 6636471 x^{2} + 1870441 x - 218792 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(504222339964811313697604991245269775390625=3^{21}\cdot 5^{20}\cdot 11^{17}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $78.63$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{22} a^{16} + \frac{3}{22} a^{15} - \frac{1}{22} a^{14} + \frac{2}{11} a^{13} + \frac{1}{11} a^{12} - \frac{5}{11} a^{11} - \frac{1}{22} a^{10} - \frac{3}{11} a^{9} - \frac{9}{22} a^{8} + \frac{3}{11} a^{7} - \frac{7}{22} a^{6} + \frac{2}{11} a^{5} - \frac{9}{22} a^{4} - \frac{3}{11} a^{3} - \frac{3}{11} a^{2} - \frac{9}{22} a + \frac{2}{11}$, $\frac{1}{22} a^{17} + \frac{1}{22} a^{15} - \frac{2}{11} a^{14} + \frac{1}{22} a^{13} - \frac{5}{22} a^{12} - \frac{2}{11} a^{11} + \frac{4}{11} a^{10} + \frac{9}{22} a^{9} - \frac{3}{22} a^{7} + \frac{3}{22} a^{6} + \frac{1}{22} a^{5} - \frac{1}{22} a^{4} + \frac{1}{22} a^{3} + \frac{9}{22} a^{2} + \frac{9}{22} a + \frac{5}{11}$, $\frac{1}{22} a^{18} + \frac{2}{11} a^{15} + \frac{1}{11} a^{14} + \frac{1}{11} a^{13} + \frac{5}{22} a^{12} + \frac{7}{22} a^{11} - \frac{1}{22} a^{10} + \frac{3}{11} a^{9} + \frac{3}{11} a^{8} + \frac{4}{11} a^{7} - \frac{3}{22} a^{6} - \frac{5}{22} a^{5} + \frac{5}{11} a^{4} + \frac{2}{11} a^{3} + \frac{2}{11} a^{2} + \frac{4}{11} a - \frac{2}{11}$, $\frac{1}{242} a^{19} - \frac{2}{121} a^{18} - \frac{1}{121} a^{17} - \frac{1}{121} a^{16} - \frac{23}{242} a^{15} - \frac{3}{242} a^{14} + \frac{37}{242} a^{13} - \frac{24}{121} a^{12} - \frac{5}{242} a^{11} - \frac{3}{22} a^{10} - \frac{7}{22} a^{9} + \frac{93}{242} a^{8} - \frac{21}{242} a^{7} - \frac{50}{121} a^{6} - \frac{7}{242} a^{5} + \frac{97}{242} a^{4} - \frac{2}{11} a^{3} + \frac{87}{242} a^{2} - \frac{3}{11} a + \frac{30}{121}$, $\frac{1}{6979100409360231047459014} a^{20} - \frac{5}{3489550204680115523729507} a^{19} - \frac{728474055179845739441}{634463673578202822496274} a^{18} + \frac{36059465731402364102472}{3489550204680115523729507} a^{17} - \frac{629260285621328372489}{634463673578202822496274} a^{16} - \frac{789660437344448471267162}{3489550204680115523729507} a^{15} + \frac{93010152440565805632249}{634463673578202822496274} a^{14} - \frac{1718632838926286291569875}{6979100409360231047459014} a^{13} + \frac{129234938047123603015571}{6979100409360231047459014} a^{12} - \frac{1752323564689980149488679}{6979100409360231047459014} a^{11} - \frac{84764770831926503368011}{634463673578202822496274} a^{10} + \frac{749477537476465646113237}{6979100409360231047459014} a^{9} - \frac{536854384606458487229261}{6979100409360231047459014} a^{8} - \frac{1608452487384953275054359}{6979100409360231047459014} a^{7} - \frac{2110978211915730957883645}{6979100409360231047459014} a^{6} - \frac{595266832012789821374030}{3489550204680115523729507} a^{5} - \frac{1446351326321906415602262}{3489550204680115523729507} a^{4} + \frac{1133474795673371474134311}{3489550204680115523729507} a^{3} - \frac{331520189139805129102127}{6979100409360231047459014} a^{2} + \frac{3448673340381916324078087}{6979100409360231047459014} a - \frac{648737772021358853156173}{3489550204680115523729507}$, $\frac{1}{3021950477252980043549753062} a^{21} + \frac{103}{1510975238626490021774876531} a^{20} + \frac{2894338810633301014835428}{1510975238626490021774876531} a^{19} + \frac{5976697150198466812424776}{1510975238626490021774876531} a^{18} - \frac{19741687989515033663218989}{1510975238626490021774876531} a^{17} + \frac{49095774209537049839693615}{3021950477252980043549753062} a^{16} - \frac{336962303665879977644419885}{1510975238626490021774876531} a^{15} + \frac{2599839021497225959194104}{1510975238626490021774876531} a^{14} - \frac{1098122517347764993932159}{12487398666334628279131211} a^{13} + \frac{93009214768652955530411119}{1510975238626490021774876531} a^{12} + \frac{470631663111045205077950507}{3021950477252980043549753062} a^{11} - \frac{1384560832856107373134328183}{3021950477252980043549753062} a^{10} + \frac{528447884482971702513360341}{1510975238626490021774876531} a^{9} + \frac{217423492659502621853442825}{1510975238626490021774876531} a^{8} + \frac{745564459668485252311203043}{1510975238626490021774876531} a^{7} + \frac{411708289953054587866386644}{1510975238626490021774876531} a^{6} + \frac{1014618385394330373040342449}{3021950477252980043549753062} a^{5} - \frac{52790432627043206125087545}{137361385329680911070443321} a^{4} - \frac{1143779904248537393408489051}{3021950477252980043549753062} a^{3} - \frac{91539564576948802034141739}{274722770659361822140886642} a^{2} + \frac{84725440967487577132173897}{3021950477252980043549753062} a + \frac{488049356601587118609804826}{1510975238626490021774876531}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 17652274051800 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 112640 |
| The 80 conjugacy class representatives for t22n36 are not computed |
| Character table for t22n36 is not computed |
Intermediate fields
| 11.11.123610132462587890625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{2}$ | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | $22$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $11$ | $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| 11.10.9.7 | $x^{10} + 2673$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |