Normalized defining polynomial
\( x^{22} - 3 x^{21} - 5 x^{20} + 20 x^{19} + 6 x^{18} - 46 x^{17} - 22 x^{16} + 88 x^{15} + 102 x^{14} - 250 x^{13} - 116 x^{12} + 460 x^{11} - 50 x^{10} - 559 x^{9} + 321 x^{8} + 395 x^{7} - 287 x^{6} - 315 x^{5} + 200 x^{4} + 136 x^{3} + 14 x^{2} - 70 x + 5 \)
Invariants
Degree: | $22$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[6, 8]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(4525438563861162255210415625\)\(\medspace = 5^{5}\cdot 7^{6}\cdot 83^{4}\cdot 127^{4}\cdot 997\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $18.07$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $5, 7, 83, 127, 997$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $2$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{5} a^{18} + \frac{1}{5} a^{17} + \frac{1}{5} a^{15} + \frac{1}{5} a^{14} - \frac{1}{5} a^{12} + \frac{2}{5} a^{10} - \frac{2}{5} a^{9} + \frac{2}{5} a^{8} + \frac{1}{5} a^{7} - \frac{2}{5} a^{6} + \frac{2}{5} a^{5} - \frac{1}{5} a^{4} - \frac{1}{5} a^{3} + \frac{1}{5} a^{2}$, $\frac{1}{5} a^{19} - \frac{1}{5} a^{17} + \frac{1}{5} a^{16} - \frac{1}{5} a^{14} - \frac{1}{5} a^{13} + \frac{1}{5} a^{12} + \frac{2}{5} a^{11} + \frac{1}{5} a^{10} - \frac{1}{5} a^{9} - \frac{1}{5} a^{8} + \frac{2}{5} a^{7} - \frac{1}{5} a^{6} + \frac{2}{5} a^{5} + \frac{2}{5} a^{3} - \frac{1}{5} a^{2}$, $\frac{1}{5} a^{20} + \frac{2}{5} a^{17} + \frac{1}{5} a^{13} + \frac{1}{5} a^{12} + \frac{1}{5} a^{11} + \frac{1}{5} a^{10} + \frac{2}{5} a^{9} - \frac{1}{5} a^{8} + \frac{2}{5} a^{5} + \frac{1}{5} a^{4} - \frac{2}{5} a^{3} + \frac{1}{5} a^{2}$, $\frac{1}{2173127445936032615101195} a^{21} + \frac{182127430628080451031954}{2173127445936032615101195} a^{20} - \frac{22097201577555220004567}{2173127445936032615101195} a^{19} + \frac{6500499970191218723160}{434625489187206523020239} a^{18} - \frac{247783412246198257838972}{2173127445936032615101195} a^{17} + \frac{56458712510595146759068}{2173127445936032615101195} a^{16} + \frac{611278234263260879401733}{2173127445936032615101195} a^{15} - \frac{774734603528414601343859}{2173127445936032615101195} a^{14} - \frac{764690895182247977994828}{2173127445936032615101195} a^{13} + \frac{82400715325844884067787}{434625489187206523020239} a^{12} - \frac{925006478602277631884204}{2173127445936032615101195} a^{11} + \frac{109198078387463896722511}{434625489187206523020239} a^{10} + \frac{367006568099529747253993}{2173127445936032615101195} a^{9} + \frac{459960147575922263439539}{2173127445936032615101195} a^{8} - \frac{262467988890157760377161}{2173127445936032615101195} a^{7} - \frac{15009966910174630561002}{2173127445936032615101195} a^{6} - \frac{172239951484243313962634}{2173127445936032615101195} a^{5} - \frac{900428614384539857307521}{2173127445936032615101195} a^{4} + \frac{318417356644741431068541}{2173127445936032615101195} a^{3} - \frac{840938362809372789051886}{2173127445936032615101195} a^{2} - \frac{38297097998709737369448}{434625489187206523020239} a + \frac{204316984701736581898777}{434625489187206523020239}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $13$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 180581.627765 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A non-solvable group of order 40874803200 |
The 400 conjugacy class representatives for t22n52 are not computed |
Character table for t22n52 is not computed |
Intermediate fields
11.3.136113034225.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 44 sibling: | data not computed |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ | $22$ | R | R | $22$ | $22$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | $22$ | $22$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
$5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
5.12.0.1 | $x^{12} - x^{3} - 2 x + 3$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
$7$ | 7.7.0.1 | $x^{7} - x + 2$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
7.7.0.1 | $x^{7} - x + 2$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ | |
7.8.6.2 | $x^{8} - 49 x^{4} + 3969$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ | |
$83$ | $\Q_{83}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{83}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
83.4.0.1 | $x^{4} - x + 22$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
83.6.4.1 | $x^{6} + 415 x^{3} + 55112$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
83.10.0.1 | $x^{10} - x + 13$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
$127$ | 127.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
127.6.4.1 | $x^{6} + 1016 x^{3} + 435483$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
127.7.0.1 | $x^{7} - x + 17$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ | |
127.7.0.1 | $x^{7} - x + 17$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ | |
997 | Data not computed |