Normalized defining polynomial
\( x^{22} - 4 x^{21} - 27 x^{20} + 143 x^{19} - 1474 x^{17} + 5043 x^{16} - 4253 x^{15} - 22763 x^{14} + 75962 x^{13} - 70679 x^{12} - 119358 x^{11} + 468438 x^{10} - 582606 x^{9} + 180283 x^{8} + 170530 x^{7} - 66816 x^{6} - 13600 x^{5} - 27878 x^{4} + 5391 x^{3} - 1956 x^{2} - 665 x + 19 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4299288794103243236127943577240214703609=19^{11}\cdot 211^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $63.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $19, 211$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{23} a^{20} + \frac{2}{23} a^{19} + \frac{7}{23} a^{18} - \frac{1}{23} a^{17} + \frac{10}{23} a^{16} - \frac{10}{23} a^{15} + \frac{5}{23} a^{14} - \frac{4}{23} a^{13} + \frac{1}{23} a^{12} + \frac{3}{23} a^{11} - \frac{6}{23} a^{10} - \frac{4}{23} a^{9} + \frac{2}{23} a^{8} + \frac{7}{23} a^{6} + \frac{4}{23} a^{5} - \frac{7}{23} a^{4} - \frac{7}{23} a^{3} + \frac{9}{23} a^{2} + \frac{1}{23} a - \frac{4}{23}$, $\frac{1}{15762723579650808699039499447347213981245999978874978667793} a^{21} + \frac{334207162439485659019835996841577884992335094032544855483}{15762723579650808699039499447347213981245999978874978667793} a^{20} + \frac{7225390632015447246303192506527935187029594958273430405681}{15762723579650808699039499447347213981245999978874978667793} a^{19} - \frac{3000815422632249980433099851003417391862408206370830901672}{15762723579650808699039499447347213981245999978874978667793} a^{18} - \frac{6278106180674962462569488297345071818887217458750261907536}{15762723579650808699039499447347213981245999978874978667793} a^{17} + \frac{7695089191727885173999146944632014836175945972198697606745}{15762723579650808699039499447347213981245999978874978667793} a^{16} - \frac{2014978690707126308865772650579927623652019742805920088069}{15762723579650808699039499447347213981245999978874978667793} a^{15} - \frac{4128721813534635534617729066120424819723330374219751820313}{15762723579650808699039499447347213981245999978874978667793} a^{14} - \frac{5998094147666834165000248993704137456188279821317990537144}{15762723579650808699039499447347213981245999978874978667793} a^{13} - \frac{901642180709942192654868212755339832903293617415307821863}{15762723579650808699039499447347213981245999978874978667793} a^{12} - \frac{3462418434025347133267296860256567698273098546372864573280}{15762723579650808699039499447347213981245999978874978667793} a^{11} - \frac{2141248750599990754676005429608583494345729562472981145838}{15762723579650808699039499447347213981245999978874978667793} a^{10} + \frac{3140602680857071911427154370385984698372375359783040083091}{15762723579650808699039499447347213981245999978874978667793} a^{9} - \frac{3152269844610570785509624118464661456668313939432036975795}{15762723579650808699039499447347213981245999978874978667793} a^{8} + \frac{6232227555424358200463478922869175624329896485932423995936}{15762723579650808699039499447347213981245999978874978667793} a^{7} + \frac{4504074486465972851187750421713408870460361301751498361375}{15762723579650808699039499447347213981245999978874978667793} a^{6} - \frac{4692764976167329864535504511534684711420816248138868071321}{15762723579650808699039499447347213981245999978874978667793} a^{5} - \frac{2603543843600563061959053526285314314065350517850772915165}{15762723579650808699039499447347213981245999978874978667793} a^{4} - \frac{1533372512076050737111738481156417531274129152897152743289}{15762723579650808699039499447347213981245999978874978667793} a^{3} - \frac{15356039682594652732373925336663753099599586503633032056}{81672142899745122792950774338586600939098445486398853201} a^{2} + \frac{464282971014366015308285562678338653363559198664596597434}{15762723579650808699039499447347213981245999978874978667793} a - \frac{3568625572193822024954887026298992673136375266490828213676}{15762723579650808699039499447347213981245999978874978667793}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 172393462364 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 22528 |
| The 100 conjugacy class representatives for t22n29 are not computed |
| Character table for t22n29 is not computed |
Intermediate fields
| 11.11.1035571956771279049.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/5.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{7}$ | R | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/29.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/47.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $19$ | 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.3.1 | $x^{4} + 76$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 211 | Data not computed | ||||||