Normalized defining polynomial
\( x^{22} - 7 x^{21} + 19 x^{20} - 278 x^{18} + 1133 x^{17} - 2011 x^{16} + 888 x^{15} + 8287 x^{14} - 39621 x^{13} + 120190 x^{12} - 205304 x^{11} + 49905 x^{10} + 471482 x^{9} - 1443152 x^{8} + 2814323 x^{7} - 4045900 x^{6} + 3758973 x^{5} - 1667602 x^{4} + 1178692 x^{3} + 478694 x^{2} - 640688 x + 244927 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4299288794103243236127943577240214703609=19^{11}\cdot 211^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $63.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $19, 211$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{19} a^{16} + \frac{5}{19} a^{14} - \frac{3}{19} a^{13} - \frac{9}{19} a^{12} - \frac{1}{19} a^{11} - \frac{2}{19} a^{10} - \frac{9}{19} a^{8} + \frac{8}{19} a^{7} + \frac{8}{19} a^{6} - \frac{6}{19} a^{4} + \frac{8}{19} a^{3} + \frac{6}{19} a^{2} - \frac{3}{19} a - \frac{8}{19}$, $\frac{1}{19} a^{17} + \frac{5}{19} a^{15} - \frac{3}{19} a^{14} - \frac{9}{19} a^{13} - \frac{1}{19} a^{12} - \frac{2}{19} a^{11} - \frac{9}{19} a^{9} + \frac{8}{19} a^{8} + \frac{8}{19} a^{7} - \frac{6}{19} a^{5} + \frac{8}{19} a^{4} + \frac{6}{19} a^{3} - \frac{3}{19} a^{2} - \frac{8}{19} a$, $\frac{1}{19} a^{18} - \frac{3}{19} a^{15} + \frac{4}{19} a^{14} - \frac{5}{19} a^{13} + \frac{5}{19} a^{12} + \frac{5}{19} a^{11} + \frac{1}{19} a^{10} + \frac{8}{19} a^{9} - \frac{4}{19} a^{8} - \frac{2}{19} a^{7} - \frac{8}{19} a^{6} + \frac{8}{19} a^{5} - \frac{2}{19} a^{4} - \frac{5}{19} a^{3} - \frac{4}{19} a + \frac{2}{19}$, $\frac{1}{19} a^{19} + \frac{4}{19} a^{15} - \frac{9}{19} a^{14} - \frac{4}{19} a^{13} - \frac{3}{19} a^{12} - \frac{2}{19} a^{11} + \frac{2}{19} a^{10} - \frac{4}{19} a^{9} + \frac{9}{19} a^{8} - \frac{3}{19} a^{7} - \frac{6}{19} a^{6} - \frac{2}{19} a^{5} - \frac{4}{19} a^{4} + \frac{5}{19} a^{3} - \frac{5}{19} a^{2} - \frac{7}{19} a - \frac{5}{19}$, $\frac{1}{133} a^{20} - \frac{2}{133} a^{19} - \frac{3}{133} a^{18} + \frac{2}{133} a^{17} - \frac{1}{133} a^{16} + \frac{40}{133} a^{15} + \frac{4}{19} a^{14} - \frac{40}{133} a^{13} + \frac{51}{133} a^{12} - \frac{8}{133} a^{11} - \frac{1}{133} a^{10} + \frac{13}{133} a^{9} - \frac{5}{133} a^{8} - \frac{37}{133} a^{7} + \frac{32}{133} a^{6} + \frac{59}{133} a^{5} + \frac{46}{133} a^{4} + \frac{48}{133} a^{3} - \frac{52}{133} a^{2} + \frac{1}{133} a - \frac{51}{133}$, $\frac{1}{42302631800612830415767162804701998693891251074021346902052448631707} a^{21} + \frac{147594095351507099284380515729377782899006407260661035440959848739}{42302631800612830415767162804701998693891251074021346902052448631707} a^{20} + \frac{1019047427742006923906471872140501118790418690744327813133395419630}{42302631800612830415767162804701998693891251074021346902052448631707} a^{19} + \frac{39040451965492657629402981343668387423063993850555597298695256467}{1839244860896210018076833165421826030169184829305275952263149940509} a^{18} - \frac{425331910738400454059661094686707214079934989608957309248119594050}{42302631800612830415767162804701998693891251074021346902052448631707} a^{17} - \frac{982811537823904324799561384958974469094026836411546291563440130511}{42302631800612830415767162804701998693891251074021346902052448631707} a^{16} - \frac{315990672119341316868569697306157608301675740374952935085404495927}{3254048600047140801212858677284769130299327005693949761696342202439} a^{15} + \frac{19889669564766513530721538231514926399274669526936918832448880106850}{42302631800612830415767162804701998693891251074021346902052448631707} a^{14} + \frac{9205023925567099266271572995872158517330599197995119726226549875368}{42302631800612830415767162804701998693891251074021346902052448631707} a^{13} + \frac{6938789897815552764452386840135178265226611984998842829095787467276}{42302631800612830415767162804701998693891251074021346902052448631707} a^{12} - \frac{9802161592442348618195591333996577978489742041906037068492085876105}{42302631800612830415767162804701998693891251074021346902052448631707} a^{11} - \frac{1198181162085306510863395202567894112215177458962804694839446962046}{42302631800612830415767162804701998693891251074021346902052448631707} a^{10} + \frac{17803573378056858377064577401576005761271674368270312002044848764637}{42302631800612830415767162804701998693891251074021346902052448631707} a^{9} - \frac{715714110065725053470706968380125856381744972942261527814775474636}{6043233114373261487966737543528856956270178724860192414578921233101} a^{8} + \frac{18011330368348472343056849008748460808633423275599415901841468864264}{42302631800612830415767162804701998693891251074021346902052448631707} a^{7} - \frac{512757116526095735707254811021206251072471386468287831202158093677}{6043233114373261487966737543528856956270178724860192414578921233101} a^{6} + \frac{2797770332814226647838574372872700954901290894405344349917861869497}{6043233114373261487966737543528856956270178724860192414578921233101} a^{5} + \frac{4099659348194045383911511372018095452634434294745452273860535490003}{42302631800612830415767162804701998693891251074021346902052448631707} a^{4} - \frac{51754058502892069836039106532067941633015823549043040644649415204}{175529592533663196745921837363908708273407680805067829469097297227} a^{3} - \frac{259732524595908110143031109444847214268183279189436528229370365868}{42302631800612830415767162804701998693891251074021346902052448631707} a^{2} + \frac{490333827529183088282972257604694955270086793442402112019997419674}{3254048600047140801212858677284769130299327005693949761696342202439} a - \frac{302999689416153986835430970121421210992701946549307992939647448077}{1839244860896210018076833165421826030169184829305275952263149940509}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 252394156565 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 22528 |
| The 100 conjugacy class representatives for t22n29 are not computed |
| Character table for t22n29 is not computed |
Intermediate fields
| 11.11.1035571956771279049.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/5.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/29.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/47.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $19$ | 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.4.3.1 | $x^{4} + 76$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 211 | Data not computed | ||||||