Normalized defining polynomial
\( x^{22} - 5 x^{21} + 2 x^{20} + 36 x^{19} - 88 x^{18} + 95 x^{17} - 15 x^{16} - 224 x^{15} + 108 x^{14} + 58 x^{13} + 1642 x^{12} - 5082 x^{11} + 6435 x^{10} + 1474 x^{9} - 21998 x^{8} + 40783 x^{7} - 25274 x^{6} - 17265 x^{5} + 57828 x^{4} - 81220 x^{3} + 54660 x^{2} - 19173 x + 7499 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4098058278162967431271914143428729=23^{21}\cdot 47^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.72$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{137} a^{20} - \frac{47}{137} a^{19} + \frac{6}{137} a^{18} + \frac{36}{137} a^{17} + \frac{6}{137} a^{16} + \frac{26}{137} a^{15} - \frac{49}{137} a^{14} - \frac{66}{137} a^{13} - \frac{52}{137} a^{12} + \frac{57}{137} a^{11} + \frac{34}{137} a^{10} - \frac{21}{137} a^{9} - \frac{68}{137} a^{8} - \frac{58}{137} a^{7} + \frac{3}{137} a^{6} - \frac{30}{137} a^{5} - \frac{58}{137} a^{4} + \frac{20}{137} a^{3} - \frac{2}{137} a^{2} + \frac{24}{137} a + \frac{52}{137}$, $\frac{1}{602007280861078150977490609392459798421921596512429} a^{21} - \frac{489257835740611558034983155774744251932749410459}{602007280861078150977490609392459798421921596512429} a^{20} + \frac{148370711526196787800711668790827885157135175058658}{602007280861078150977490609392459798421921596512429} a^{19} - \frac{68404341717511164740800106135139988137135084860946}{602007280861078150977490609392459798421921596512429} a^{18} + \frac{193101633981938345406092173986716636458711337483625}{602007280861078150977490609392459798421921596512429} a^{17} + \frac{124727868228380105745404877533234890604849368282149}{602007280861078150977490609392459798421921596512429} a^{16} + \frac{179371586155840228993875876221977892165242997388251}{602007280861078150977490609392459798421921596512429} a^{15} + \frac{236047285995175975480016472556413453575550514987852}{602007280861078150977490609392459798421921596512429} a^{14} + \frac{189460879922027419847936544454289435482796281306567}{602007280861078150977490609392459798421921596512429} a^{13} + \frac{284493561098021532549902751558862950597703882867929}{602007280861078150977490609392459798421921596512429} a^{12} - \frac{32254313753950253165268402013424214975521049217286}{602007280861078150977490609392459798421921596512429} a^{11} + \frac{149344323800938044037007995434059144842975438592019}{602007280861078150977490609392459798421921596512429} a^{10} - \frac{33627973749550140142215729209742193833508847512818}{602007280861078150977490609392459798421921596512429} a^{9} + \frac{44049219550753665062142266285449073384280253375665}{602007280861078150977490609392459798421921596512429} a^{8} + \frac{137928535125520475424924168344253588975460016511496}{602007280861078150977490609392459798421921596512429} a^{7} - \frac{199427085951746056064501350149943705030622358293326}{602007280861078150977490609392459798421921596512429} a^{6} + \frac{1892572798296037776232219926405803340949049470764}{602007280861078150977490609392459798421921596512429} a^{5} + \frac{91409761680288535093146018911617067501513354876206}{602007280861078150977490609392459798421921596512429} a^{4} + \frac{10549006215688284438567846526306656394944613684329}{602007280861078150977490609392459798421921596512429} a^{3} + \frac{190975913208948743787450637679872134868535928416247}{602007280861078150977490609392459798421921596512429} a^{2} - \frac{140983097762892517560895707717728626445160322071312}{602007280861078150977490609392459798421921596512429} a - \frac{117987770930008061007947631614922997081551928166713}{602007280861078150977490609392459798421921596512429}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 132400558.372 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 22528 |
| The 208 conjugacy class representatives for t22n28 are not computed |
| Character table for t22n28 is not computed |
Intermediate fields
| \(\Q(\zeta_{23})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/5.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ | $22$ | $22$ | ${\href{/LocalNumberField/19.11.0.1}{11} }^{2}$ | R | $22$ | $22$ | $22$ | $22$ | ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ | R | $22$ | ${\href{/LocalNumberField/59.11.0.1}{11} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 23 | Data not computed | ||||||
| $47$ | $\Q_{47}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{47}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{47}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{47}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{47}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{47}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{47}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{47}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 47.2.0.1 | $x^{2} - x + 13$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 47.2.1.2 | $x^{2} + 94$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 47.2.1.2 | $x^{2} + 94$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 47.2.0.1 | $x^{2} - x + 13$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 47.2.1.2 | $x^{2} + 94$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 47.2.0.1 | $x^{2} - x + 13$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 47.2.0.1 | $x^{2} - x + 13$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |