Normalized defining polynomial
\( x^{22} - 5 x^{21} + 2 x^{20} + 36 x^{19} - 111 x^{18} + 141 x^{17} - 107 x^{16} + 558 x^{15} - 1962 x^{14} + 3577 x^{13} - 3027 x^{12} - 2023 x^{11} + 17912 x^{10} - 42755 x^{9} + 54822 x^{8} - 37877 x^{7} + 18311 x^{6} - 12826 x^{5} + 673 x^{4} + 3420 x^{3} + 4336 x^{2} - 3280 x + 47 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4098058278162967431271914143428729=23^{21}\cdot 47^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.72$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{47} a^{19} - \frac{3}{47} a^{18} - \frac{6}{47} a^{17} + \frac{7}{47} a^{16} - \frac{16}{47} a^{15} - \frac{2}{47} a^{14} - \frac{5}{47} a^{13} - \frac{20}{47} a^{12} - \frac{19}{47} a^{11} - \frac{19}{47} a^{10} + \frac{18}{47} a^{9} - \frac{8}{47} a^{8} + \frac{14}{47} a^{7} + \frac{21}{47} a^{6} - \frac{17}{47} a^{5} - \frac{17}{47} a^{4} + \frac{15}{47} a^{3} - \frac{10}{47} a^{2} - \frac{20}{47} a$, $\frac{1}{47} a^{20} - \frac{15}{47} a^{18} - \frac{11}{47} a^{17} + \frac{5}{47} a^{16} - \frac{3}{47} a^{15} - \frac{11}{47} a^{14} + \frac{12}{47} a^{13} + \frac{15}{47} a^{12} + \frac{18}{47} a^{11} + \frac{8}{47} a^{10} - \frac{1}{47} a^{9} - \frac{10}{47} a^{8} + \frac{16}{47} a^{7} - \frac{1}{47} a^{6} - \frac{21}{47} a^{5} + \frac{11}{47} a^{4} - \frac{12}{47} a^{3} - \frac{3}{47} a^{2} - \frac{13}{47} a$, $\frac{1}{4031272075970082285749472636164185569444769586593} a^{21} - \frac{95820884129888499535340375386065256168807195}{85771746297235793313818566726897565307335523119} a^{20} - \frac{33048158967174714371918383880479768788114635057}{4031272075970082285749472636164185569444769586593} a^{19} - \frac{1409268215336197473475375926891036688390623494026}{4031272075970082285749472636164185569444769586593} a^{18} - \frac{432794410260144138998241877084491822617222805347}{4031272075970082285749472636164185569444769586593} a^{17} + \frac{889069815050176914509271280983235290998033147607}{4031272075970082285749472636164185569444769586593} a^{16} + \frac{750260852123153375115006649477695217500837287571}{4031272075970082285749472636164185569444769586593} a^{15} - \frac{1263486644044421033708533791225284656039242680410}{4031272075970082285749472636164185569444769586593} a^{14} - \frac{691428409030073363803581896944867721738456579798}{4031272075970082285749472636164185569444769586593} a^{13} - \frac{1560895764432060809963033556195423289887319603231}{4031272075970082285749472636164185569444769586593} a^{12} - \frac{589688981512607886277729639439105360148824990623}{4031272075970082285749472636164185569444769586593} a^{11} + \frac{1382898133915827136606051962533857860125026129660}{4031272075970082285749472636164185569444769586593} a^{10} - \frac{83889779738232149895356599684151399607633634344}{4031272075970082285749472636164185569444769586593} a^{9} + \frac{26708083553275757200513513978125274688441006880}{85771746297235793313818566726897565307335523119} a^{8} - \frac{1935343456056636950546368611570071294440508807500}{4031272075970082285749472636164185569444769586593} a^{7} - \frac{1114738717429965680775875538045733009350298400723}{4031272075970082285749472636164185569444769586593} a^{6} + \frac{512935854980100741008020545658979444257584079701}{4031272075970082285749472636164185569444769586593} a^{5} + \frac{1576800715335741146962184360755000353905977204953}{4031272075970082285749472636164185569444769586593} a^{4} + \frac{853506563636256861567424662801235166455643774712}{4031272075970082285749472636164185569444769586593} a^{3} - \frac{207270929141026627046073566044692430592657626151}{4031272075970082285749472636164185569444769586593} a^{2} - \frac{592087662127203022940176703787484316177243303970}{4031272075970082285749472636164185569444769586593} a + \frac{36554865434514162720010502885811945211037941934}{85771746297235793313818566726897565307335523119}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 76447219.2916 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 22528 |
| The 208 conjugacy class representatives for t22n28 are not computed |
| Character table for t22n28 is not computed |
Intermediate fields
| \(\Q(\zeta_{23})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/5.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ | $22$ | $22$ | ${\href{/LocalNumberField/19.11.0.1}{11} }^{2}$ | R | $22$ | $22$ | $22$ | $22$ | ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ | R | $22$ | ${\href{/LocalNumberField/59.11.0.1}{11} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 23 | Data not computed | ||||||
| 47 | Data not computed | ||||||