Normalized defining polynomial
\( x^{22} - x^{21} + x^{20} - x^{19} - 22 x^{18} - x^{17} - 114 x^{16} + 160 x^{15} - 22 x^{14} + 390 x^{13} + 806 x^{12} + 712 x^{11} + 1174 x^{10} - 5015 x^{9} - 2690 x^{8} - 5866 x^{7} + 10213 x^{6} - 2646 x^{5} + 2232 x^{4} - 12927 x^{3} + 6786 x^{2} - 806 x + 47 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4098058278162967431271914143428729=23^{21}\cdot 47^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.72$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{174883771709751143444715484039468850714144116723} a^{21} - \frac{80484626567360129110536382634530168171470499338}{174883771709751143444715484039468850714144116723} a^{20} - \frac{13936375699903299955303913864654219605379723829}{174883771709751143444715484039468850714144116723} a^{19} - \frac{60571177708071907254313158173980865768940525305}{174883771709751143444715484039468850714144116723} a^{18} + \frac{36432263072581920619113643484717848523887298499}{174883771709751143444715484039468850714144116723} a^{17} + \frac{41320223803545446647775749778005378216601021676}{174883771709751143444715484039468850714144116723} a^{16} + \frac{55124790841368215120375425809509274614219546240}{174883771709751143444715484039468850714144116723} a^{15} + \frac{59068625785658521358965097224182769283393059022}{174883771709751143444715484039468850714144116723} a^{14} + \frac{16877371784930962740937239376728541044585824825}{174883771709751143444715484039468850714144116723} a^{13} - \frac{82654432288391711337510775377094552785418555775}{174883771709751143444715484039468850714144116723} a^{12} - \frac{74016565232891959453180646637716815095337942112}{174883771709751143444715484039468850714144116723} a^{11} - \frac{25615336717913259018082070184977670074610651577}{174883771709751143444715484039468850714144116723} a^{10} - \frac{61120153802278562073069253604750628468444049381}{174883771709751143444715484039468850714144116723} a^{9} + \frac{11135947205019267224864902997672775286582147546}{174883771709751143444715484039468850714144116723} a^{8} + \frac{35931197316843576328207083950312283535627819628}{174883771709751143444715484039468850714144116723} a^{7} - \frac{29559424476632235846694345150222142898999192557}{174883771709751143444715484039468850714144116723} a^{6} + \frac{35082737813082507899463062863818848314623515668}{174883771709751143444715484039468850714144116723} a^{5} - \frac{54078463926544072732393102091025695543442842120}{174883771709751143444715484039468850714144116723} a^{4} - \frac{17881245598493886287590403250956851663854912486}{174883771709751143444715484039468850714144116723} a^{3} + \frac{37775117335820607902184604294027803824779235212}{174883771709751143444715484039468850714144116723} a^{2} + \frac{76507036735428209122529503314888666583954004713}{174883771709751143444715484039468850714144116723} a + \frac{49090279070681853869045433642960103527837030017}{174883771709751143444715484039468850714144116723}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 123704206.751 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 22528 |
| The 208 conjugacy class representatives for t22n28 are not computed |
| Character table for t22n28 is not computed |
Intermediate fields
| \(\Q(\zeta_{23})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/5.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ | $22$ | $22$ | ${\href{/LocalNumberField/19.11.0.1}{11} }^{2}$ | R | $22$ | $22$ | $22$ | $22$ | ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ | R | $22$ | ${\href{/LocalNumberField/59.11.0.1}{11} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 23 | Data not computed | ||||||
| 47 | Data not computed | ||||||