Normalized defining polynomial
\( x^{22} - x^{21} + 5 x^{20} - 13 x^{19} + 3 x^{18} - 23 x^{17} - 63 x^{16} + 117 x^{15} + 79 x^{14} + 221 x^{13} + 156 x^{12} + 15 x^{11} - 1069 x^{10} - 1131 x^{9} - 164 x^{8} + 1812 x^{7} + 1646 x^{6} - 690 x^{5} - 1234 x^{4} - 363 x^{3} - 6 x^{2} + 10 x + 1 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3790988231418101231518884499009=23^{20}\cdot 47^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $24.54$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{10191388674737020354634217522157} a^{21} + \frac{2578164997823128219308452693194}{10191388674737020354634217522157} a^{20} + \frac{3646989572711473138287284176332}{10191388674737020354634217522157} a^{19} - \frac{2666282424612838352046043843336}{10191388674737020354634217522157} a^{18} + \frac{4612725007892737542519086806548}{10191388674737020354634217522157} a^{17} - \frac{359022680614952927966426151515}{10191388674737020354634217522157} a^{16} + \frac{994770508587392948082456499473}{10191388674737020354634217522157} a^{15} + \frac{362761085266824123180502526358}{10191388674737020354634217522157} a^{14} + \frac{422816268422604879419343950037}{10191388674737020354634217522157} a^{13} + \frac{3114620458084284577189703381608}{10191388674737020354634217522157} a^{12} - \frac{4288744378104634184082836077134}{10191388674737020354634217522157} a^{11} + \frac{634410985730960227553491493343}{10191388674737020354634217522157} a^{10} - \frac{3635261196064879603966701611220}{10191388674737020354634217522157} a^{9} + \frac{791713466399016619811614954709}{10191388674737020354634217522157} a^{8} + \frac{2798036149485325469688565855967}{10191388674737020354634217522157} a^{7} + \frac{4215178287154735736141911703023}{10191388674737020354634217522157} a^{6} - \frac{3438041228481728444889940901428}{10191388674737020354634217522157} a^{5} - \frac{3989835784734430046445045238474}{10191388674737020354634217522157} a^{4} - \frac{3216379188462000930694834995489}{10191388674737020354634217522157} a^{3} + \frac{2809904793246851608677841480297}{10191388674737020354634217522157} a^{2} - \frac{3402514124415836753151374698230}{10191388674737020354634217522157} a + \frac{529911411884370559284392578149}{10191388674737020354634217522157}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4141006.01086 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 11264 |
| The 104 conjugacy class representatives for t22n23 are not computed |
| Character table for t22n23 is not computed |
Intermediate fields
| \(\Q(\zeta_{23})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/5.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/13.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/17.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/19.11.0.1}{11} }^{2}$ | R | ${\href{/LocalNumberField/29.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/37.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/41.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ | R | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.11.0.1}{11} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $23$ | 23.11.10.10 | $x^{11} - 23$ | $11$ | $1$ | $10$ | $C_{11}$ | $[\ ]_{11}$ |
| 23.11.10.10 | $x^{11} - 23$ | $11$ | $1$ | $10$ | $C_{11}$ | $[\ ]_{11}$ | |
| 47 | Data not computed | ||||||