Normalized defining polynomial
\( x^{22} - 4 x^{21} - 26 x^{20} + 225 x^{19} - 195 x^{18} - 3183 x^{17} + 11967 x^{16} - 4032 x^{15} - 86025 x^{14} + 282910 x^{13} - 368011 x^{12} - 99386 x^{11} + 1108671 x^{10} - 1443225 x^{9} - 334350 x^{8} + 1018083 x^{7} + 6585843 x^{6} - 19265868 x^{5} + 22882725 x^{4} - 14084505 x^{3} + 3667101 x^{2} + 526311 x - 381201 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3361482266432075424650699941635131835937500=2^{2}\cdot 3^{20}\cdot 5^{21}\cdot 11^{17}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $85.71$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{5} a^{11} - \frac{2}{5} a^{10} + \frac{1}{5} a^{6} - \frac{2}{5} a^{5} - \frac{1}{5} a + \frac{2}{5}$, $\frac{1}{5} a^{12} + \frac{1}{5} a^{10} + \frac{1}{5} a^{7} + \frac{1}{5} a^{5} - \frac{1}{5} a^{2} - \frac{1}{5}$, $\frac{1}{5} a^{13} + \frac{2}{5} a^{10} + \frac{1}{5} a^{8} + \frac{2}{5} a^{5} - \frac{1}{5} a^{3} - \frac{2}{5}$, $\frac{1}{5} a^{14} - \frac{1}{5} a^{10} + \frac{1}{5} a^{9} - \frac{1}{5} a^{5} - \frac{1}{5} a^{4} + \frac{1}{5}$, $\frac{1}{5} a^{15} - \frac{1}{5} a^{10} + \frac{2}{5} a^{5} + \frac{2}{5}$, $\frac{1}{5} a^{16} - \frac{2}{5} a^{10} - \frac{2}{5} a^{6} - \frac{2}{5} a^{5} + \frac{1}{5} a + \frac{2}{5}$, $\frac{1}{10} a^{17} - \frac{1}{10} a^{15} - \frac{1}{10} a^{13} - \frac{1}{10} a^{12} - \frac{1}{10} a^{11} + \frac{1}{10} a^{10} + \frac{2}{5} a^{8} + \frac{1}{5} a^{7} + \frac{2}{5} a^{6} - \frac{1}{5} a^{5} - \frac{1}{2} a^{4} - \frac{2}{5} a^{3} + \frac{1}{5} a^{2} - \frac{2}{5} a + \frac{3}{10}$, $\frac{1}{10} a^{18} - \frac{1}{10} a^{16} - \frac{1}{10} a^{14} - \frac{1}{10} a^{13} - \frac{1}{10} a^{12} - \frac{1}{10} a^{11} + \frac{2}{5} a^{10} + \frac{2}{5} a^{9} + \frac{1}{5} a^{8} + \frac{2}{5} a^{7} - \frac{2}{5} a^{6} - \frac{1}{10} a^{5} - \frac{2}{5} a^{4} + \frac{1}{5} a^{3} - \frac{2}{5} a^{2} - \frac{1}{2} a - \frac{2}{5}$, $\frac{1}{10} a^{19} - \frac{1}{10} a^{14} - \frac{1}{10} a^{11} - \frac{3}{10} a^{10} + \frac{1}{5} a^{9} - \frac{1}{10} a^{6} + \frac{1}{5} a^{5} - \frac{3}{10} a^{4} - \frac{1}{2} a^{2} - \frac{2}{5} a + \frac{3}{10}$, $\frac{1}{10} a^{20} - \frac{1}{10} a^{15} - \frac{1}{10} a^{12} - \frac{1}{10} a^{11} - \frac{1}{5} a^{10} - \frac{1}{10} a^{7} + \frac{2}{5} a^{6} + \frac{3}{10} a^{5} - \frac{1}{2} a^{3} - \frac{2}{5} a^{2} + \frac{1}{10} a + \frac{2}{5}$, $\frac{1}{154102765776862823687426033943020551702389341551637764946385186750504370} a^{21} + \frac{2841730892027593215176532643814654902635611006660618180992314579362656}{77051382888431411843713016971510275851194670775818882473192593375252185} a^{20} + \frac{6905529386977226775086950679546752736213474284621827894855024539939291}{154102765776862823687426033943020551702389341551637764946385186750504370} a^{19} - \frac{101623550725907297601747119678456655893643482503348648638873319539656}{77051382888431411843713016971510275851194670775818882473192593375252185} a^{18} + \frac{645357197104936287743330705589046594731514946485396922642666285889931}{30820553155372564737485206788604110340477868310327552989277037350100874} a^{17} - \frac{3757117238381133770236281294305212671957943315482163077185818236154523}{154102765776862823687426033943020551702389341551637764946385186750504370} a^{16} - \frac{1684346919245753595067089973462283041044883698919226129989607469264681}{30820553155372564737485206788604110340477868310327552989277037350100874} a^{15} + \frac{387161119888930775616946789676466029198754881676715403522144739743307}{154102765776862823687426033943020551702389341551637764946385186750504370} a^{14} + \frac{1153776402956416550144983185586293388036887340804124962985848219156026}{77051382888431411843713016971510275851194670775818882473192593375252185} a^{13} + \frac{976148771675561364863925875352265445910637391366809675098898420908749}{15410276577686282368742603394302055170238934155163776494638518675050437} a^{12} + \frac{6516221309702658151036903405547975352353751616112220842821178321577511}{77051382888431411843713016971510275851194670775818882473192593375252185} a^{11} - \frac{5509176212779102553326287522227647907004433342093935695028563907928601}{77051382888431411843713016971510275851194670775818882473192593375252185} a^{10} - \frac{6803301439698794326097335453462959757753621481953760723336381851901300}{15410276577686282368742603394302055170238934155163776494638518675050437} a^{9} + \frac{34113463484573936921840162725205135053474509263295561270489037052419571}{154102765776862823687426033943020551702389341551637764946385186750504370} a^{8} + \frac{3640120297339694303288856947714775587416845250329754627053560545735008}{15410276577686282368742603394302055170238934155163776494638518675050437} a^{7} - \frac{24536601455342311664900281978739261938148284636077775029958857035012322}{77051382888431411843713016971510275851194670775818882473192593375252185} a^{6} + \frac{8172540216453071316865208756740293796502240103082573644021428255672027}{77051382888431411843713016971510275851194670775818882473192593375252185} a^{5} - \frac{26683331376989737000022104920938185573574199382698174862294270090892881}{154102765776862823687426033943020551702389341551637764946385186750504370} a^{4} - \frac{34854334803695287677841839215751194178718818798783510050056828229853837}{77051382888431411843713016971510275851194670775818882473192593375252185} a^{3} + \frac{681587414942971881523005328310024315716526744272174323424831451907926}{15410276577686282368742603394302055170238934155163776494638518675050437} a^{2} + \frac{18905699658383722246358988673830670413005210367650189990165775261606124}{77051382888431411843713016971510275851194670775818882473192593375252185} a - \frac{26310538003457571035701161120051700403554413118237263454095585576803406}{77051382888431411843713016971510275851194670775818882473192593375252185}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7141027871840 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 112640 |
| The 80 conjugacy class representatives for t22n36 are not computed |
| Character table for t22n36 is not computed |
Intermediate fields
| 11.11.123610132462587890625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | $22$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| $3$ | 3.11.10.1 | $x^{11} - 3$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ |
| 3.11.10.1 | $x^{11} - 3$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ | |
| 5 | Data not computed | ||||||
| $11$ | 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |