Normalized defining polynomial
\( x^{22} - 4 x^{21} - 39 x^{20} + 40 x^{19} + 980 x^{18} + 24 x^{17} - 8096 x^{16} - 2536 x^{15} + 15180 x^{14} - 287440 x^{13} + 74008 x^{12} + 2140848 x^{11} + 850628 x^{10} - 11080640 x^{9} + 58622580 x^{8} - 105917632 x^{7} - 101665472 x^{6} + 458745408 x^{5} - 596640480 x^{4} + 217405440 x^{3} + 370003392 x^{2} - 1271386368 x + 1866411072 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(33059881728000000000000000000000000000000000000=2^{44}\cdot 3^{17}\cdot 5^{36}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $130.17$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7}$, $\frac{1}{12} a^{10} - \frac{1}{6} a^{9} + \frac{1}{12} a^{8} - \frac{1}{6} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{6} a^{4} + \frac{1}{3} a^{3} - \frac{1}{6} a^{2}$, $\frac{1}{24} a^{11} - \frac{1}{8} a^{9} - \frac{1}{2} a^{7} + \frac{1}{4} a^{5} - \frac{1}{4} a^{3} - \frac{1}{6} a^{2} - \frac{1}{2} a$, $\frac{1}{24} a^{12} - \frac{1}{24} a^{10} - \frac{1}{6} a^{9} + \frac{1}{12} a^{8} - \frac{1}{6} a^{7} + \frac{1}{12} a^{6} + \frac{1}{3} a^{5} - \frac{5}{12} a^{4} + \frac{1}{6} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{24} a^{13} + \frac{1}{8} a^{9} - \frac{1}{4} a^{7} - \frac{1}{2} a^{5} - \frac{1}{6} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{24} a^{14} - \frac{1}{24} a^{10} - \frac{1}{6} a^{9} + \frac{1}{12} a^{8} - \frac{1}{6} a^{7} + \frac{1}{3} a^{6} + \frac{1}{6} a^{5} + \frac{1}{12} a^{4} - \frac{1}{6} a^{3} - \frac{1}{6} a^{2}$, $\frac{1}{24} a^{15} + \frac{1}{8} a^{9} - \frac{1}{6} a^{6} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{72} a^{16} - \frac{1}{72} a^{15} - \frac{1}{72} a^{13} + \frac{1}{72} a^{12} + \frac{1}{12} a^{9} - \frac{1}{6} a^{8} + \frac{7}{36} a^{7} + \frac{5}{36} a^{6} - \frac{1}{9} a^{4} - \frac{2}{9} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{144} a^{17} - \frac{1}{144} a^{15} + \frac{1}{72} a^{14} - \frac{1}{72} a^{12} + \frac{1}{24} a^{9} - \frac{1}{36} a^{8} - \frac{1}{4} a^{7} + \frac{1}{36} a^{6} - \frac{11}{36} a^{5} - \frac{1}{3} a^{4} + \frac{7}{18} a^{3} - \frac{1}{2} a^{2} + \frac{1}{3} a$, $\frac{1}{288} a^{18} + \frac{1}{288} a^{16} - \frac{1}{72} a^{13} - \frac{1}{72} a^{12} - \frac{1}{24} a^{10} - \frac{2}{9} a^{9} - \frac{1}{12} a^{8} + \frac{13}{36} a^{7} + \frac{7}{24} a^{6} - \frac{1}{6} a^{5} + \frac{1}{72} a^{4} + \frac{2}{9} a^{3} - \frac{1}{2} a^{2} + \frac{1}{3} a - \frac{1}{2}$, $\frac{1}{576} a^{19} + \frac{1}{576} a^{17} - \frac{1}{144} a^{16} - \frac{1}{72} a^{15} + \frac{1}{72} a^{14} - \frac{1}{48} a^{13} + \frac{1}{72} a^{12} - \frac{1}{48} a^{11} - \frac{1}{36} a^{10} - \frac{1}{8} a^{9} - \frac{1}{36} a^{8} - \frac{35}{144} a^{7} + \frac{5}{36} a^{6} - \frac{71}{144} a^{5} - \frac{5}{12} a^{4} + \frac{13}{36} a^{3} - \frac{1}{3} a^{2} + \frac{5}{12} a$, $\frac{1}{90914249373773184} a^{20} + \frac{23569802922049}{45457124686886592} a^{19} + \frac{7824484060119}{10101583263752576} a^{18} + \frac{79968008869951}{45457124686886592} a^{17} - \frac{62585022546157}{45457124686886592} a^{16} + \frac{6310813097361}{315674476992268} a^{15} + \frac{12676963982785}{2525395815938144} a^{14} - \frac{7224361619437}{1894046861953608} a^{13} - \frac{28573436785239}{2525395815938144} a^{12} - \frac{75860618760281}{11364281171721648} a^{11} + \frac{28596550674194}{710267573232603} a^{10} + \frac{227326146770309}{947023430976804} a^{9} + \frac{2651192544460753}{22728562343443296} a^{8} - \frac{2661205199199125}{11364281171721648} a^{7} + \frac{3700114237645601}{7576187447814432} a^{6} - \frac{532265898474707}{3788093723907216} a^{5} - \frac{1523460249937957}{3788093723907216} a^{4} - \frac{51708620457123}{157837238496134} a^{3} - \frac{725614469967733}{1894046861953608} a^{2} + \frac{60630976593643}{315674476992268} a - \frac{71496391778999}{315674476992268}$, $\frac{1}{13897448829272055670467297972929908172098203445288248469911658221434112} a^{21} + \frac{12157979625623107081768272048553718400524786473230359}{3474362207318013917616824493232477043024550861322062117477914555358528} a^{20} + \frac{1234905582752369704105389207582219845772108258369717595543327766915}{1544160981030228407829699774769989796899800382809805385545739802381568} a^{19} - \frac{1599873443721441630324731490866200060029429414593716295132113423657}{1737181103659006958808412246616238521512275430661031058738957277679264} a^{18} - \frac{10309468231228520647027179917693345741168233616364134842192933779923}{6948724414636027835233648986464954086049101722644124234955829110717056} a^{17} + \frac{171692195035852305983960494425418089484309838757419843268425129597}{48255030657194637744678117961562181153118761962806418298304368824424} a^{16} - \frac{22995574615913695344507983730997547364873593026339609435042656349319}{3474362207318013917616824493232477043024550861322062117477914555358528} a^{15} + \frac{28138770523724936676488421948918272720572101041111457604876195303123}{1737181103659006958808412246616238521512275430661031058738957277679264} a^{14} + \frac{2522513229871678374043559736678781034158080147576840534146318547919}{128680081752519033985808314564165816408316698567483782128811650198464} a^{13} - \frac{1740656477961756139931572359419266764696497296876292474171180420945}{434295275914751739702103061654059630378068857665257764684739319419816} a^{12} + \frac{2734686600715361663822691582873591444585636669242079075837494727353}{434295275914751739702103061654059630378068857665257764684739319419816} a^{11} - \frac{10684720758583580287959081256263019606226076693759591463233950414653}{289530183943167826468068707769373086918712571776838509789826212946544} a^{10} - \frac{778585062548580837484344522637033143295770030554187027689575136488831}{3474362207318013917616824493232477043024550861322062117477914555358528} a^{9} + \frac{20091527208353073614688409727537072027895645202010959218093797040593}{434295275914751739702103061654059630378068857665257764684739319419816} a^{8} - \frac{540234466392533123797555549587020349903329559753064958260480734529195}{1158120735772671305872274831077492347674850287107354039159304851786176} a^{7} + \frac{76859488582588617803447548935218223917404245900550664299361891323153}{434295275914751739702103061654059630378068857665257764684739319419816} a^{6} + \frac{407382760549420770244525781468896580159820059131619071412895700172567}{1737181103659006958808412246616238521512275430661031058738957277679264} a^{5} - \frac{25644202683669827655629055067990056758297304840636907804852784269943}{144765091971583913234034353884686543459356285888419254894913106473272} a^{4} + \frac{47767234567697284815392918993843047052508966511887796285315285327301}{96510061314389275489356235923124362306237523925612836596608737648848} a^{3} + \frac{891027131592191846546362281073105440157557033885228382055245134425}{24127515328597318872339058980781090576559380981403209149152184412212} a^{2} - \frac{279802288163346104804707668531881854351878017935063251199726251989}{48255030657194637744678117961562181153118761962806418298304368824424} a + \frac{654823095632871649009270657603890359120627700230111285214259885863}{2010626277383109906028254915065090881379948415116934095762682034351}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12955926374500000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 15840 |
| The 20 conjugacy class representatives for t22n27 |
| Character table for t22n27 |
Intermediate fields
| \(\Q(\sqrt{3}) \), 11.3.6561000000000000000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 22 sibling: | data not computed |
| Degree 24 sibling: | data not computed |
| Degree 44 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | $22$ | ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | $22$ | ${\href{/LocalNumberField/37.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | $22$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.8.18.63 | $x^{8} + 2 x^{4} + 4 x^{3} + 6$ | $8$ | $1$ | $18$ | $S_4\times C_2$ | $[2, 8/3, 8/3]_{3}^{2}$ | |
| 2.12.24.451 | $x^{12} + 4 x^{11} + 4 x^{9} - 2 x^{8} + 2 x^{6} + 2 x^{4} + 4 x^{2} + 4 x - 2$ | $12$ | $1$ | $24$ | $C_2 \times S_4$ | $[2, 8/3, 8/3]_{3}^{2}$ | |
| 3 | Data not computed | ||||||
| $5$ | 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 5.10.18.2 | $x^{10} + 10 x^{8} + 40 x^{6} + 60 x^{5} + 80 x^{4} - 75 x^{3} + 80 x^{2} + 75 x + 57$ | $5$ | $2$ | $18$ | $F_{5}\times C_2$ | $[9/4]_{4}^{2}$ | |
| 5.10.18.2 | $x^{10} + 10 x^{8} + 40 x^{6} + 60 x^{5} + 80 x^{4} - 75 x^{3} + 80 x^{2} + 75 x + 57$ | $5$ | $2$ | $18$ | $F_{5}\times C_2$ | $[9/4]_{4}^{2}$ | |