Normalized defining polynomial
\( x^{22} + 2 x^{20} - 3444 x^{18} - 122572 x^{16} - 1108565 x^{14} + 16645328 x^{12} + 450015451 x^{10} + 3964896234 x^{8} + 16436635093 x^{6} + 31054897710 x^{4} + 18216187456 x^{2} - 5496544763 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(309044195601903421945287518629445365867259019395072=2^{22}\cdot 74843^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $197.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 74843$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{74159618977254687938769974367717671589847231893624453} a^{20} - \frac{9919778007279386327704386009483327141803186895394540}{24719872992418229312923324789239223863282410631208151} a^{18} + \frac{11897583169025935940025004741952969509551383248382517}{24719872992418229312923324789239223863282410631208151} a^{16} - \frac{19521472476637478081175336712727194086106937637614899}{74159618977254687938769974367717671589847231893624453} a^{14} + \frac{4601707810029591061596727378950127484922703521106521}{24719872992418229312923324789239223863282410631208151} a^{12} + \frac{14554514467535473682173828801337997036680463987578918}{74159618977254687938769974367717671589847231893624453} a^{10} + \frac{7392487006638978279967722076795662090919817549988799}{24719872992418229312923324789239223863282410631208151} a^{8} + \frac{7880146168387823432488149668232010745288739433671885}{24719872992418229312923324789239223863282410631208151} a^{6} - \frac{22151208479820135150998449670811681198784768569042125}{74159618977254687938769974367717671589847231893624453} a^{4} + \frac{7492994389302048573438875267508071719536633958351582}{74159618977254687938769974367717671589847231893624453} a^{2} - \frac{32903285704609002074986384685372272659301998848423026}{74159618977254687938769974367717671589847231893624453}$, $\frac{1}{20097256742836020431406663053651489000848599843172226763} a^{21} + \frac{1226073871613632079318461853452477866022317344665013010}{6699085580945340143802221017883829666949533281057408921} a^{19} - \frac{1446574923383649593522451157823161238424110843992898392}{6699085580945340143802221017883829666949533281057408921} a^{17} - \frac{3875821659293881250897214003834046116758162996106086455}{20097256742836020431406663053651489000848599843172226763} a^{15} + \frac{3292344815801654089680398924347766901301483317471790604}{6699085580945340143802221017883829666949533281057408921} a^{13} + \frac{6318122127534183948477621650057340082173695174945657423}{20097256742836020431406663053651489000848599843172226763} a^{11} + \frac{1935542580415260864687987055637455123426947846784224577}{6699085580945340143802221017883829666949533281057408921} a^{9} - \frac{2810185374967290318240770876305039509668906072524057329}{6699085580945340143802221017883829666949533281057408921} a^{7} - \frac{2246939777797460773314097680702341828894201725377775715}{20097256742836020431406663053651489000848599843172226763} a^{5} + \frac{1194046898025377055593758465150990817157092344256342830}{20097256742836020431406663053651489000848599843172226763} a^{3} + \frac{7679697087929878543557090949557265572684810118088520086}{20097256742836020431406663053651489000848599843172226763} a$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 88425075324200000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1351680 |
| The 112 conjugacy class representatives for t22n42 are not computed |
| Character table for t22n42 is not computed |
Intermediate fields
| 11.11.31376518243389673201.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | $22$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 74843 | Data not computed | ||||||