Normalized defining polynomial
\( x^{22} + 162 x^{20} + 8365 x^{18} + 150901 x^{16} + 603205 x^{14} - 6625362 x^{12} - 32932697 x^{10} + 128155464 x^{8} + 204536177 x^{6} - 619108447 x^{4} - 27916439 x^{2} - 74843 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(309044195601903421945287518629445365867259019395072=2^{22}\cdot 74843^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $197.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 74843$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{12} - \frac{1}{3} a^{10} - \frac{1}{3} a^{4} + \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{15} + \frac{1}{3} a^{13} - \frac{1}{3} a^{11} - \frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{3} a^{16} + \frac{1}{3} a^{12} + \frac{1}{3} a^{10} - \frac{1}{3} a^{6} - \frac{1}{3} a^{4} - \frac{1}{3}$, $\frac{1}{3} a^{17} + \frac{1}{3} a^{13} + \frac{1}{3} a^{11} - \frac{1}{3} a^{7} - \frac{1}{3} a^{5} - \frac{1}{3} a$, $\frac{1}{3} a^{18} + \frac{1}{3} a^{10} - \frac{1}{3} a^{8} - \frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{3} a^{19} + \frac{1}{3} a^{11} - \frac{1}{3} a^{9} - \frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{60775755394873568997062729256838005103076899085589} a^{20} - \frac{6779608302757189642006603440735201416342199685969}{60775755394873568997062729256838005103076899085589} a^{18} + \frac{2812245330332635710525627388115087732265155146175}{60775755394873568997062729256838005103076899085589} a^{16} + \frac{9105860089710913096384214503212306909000468779894}{60775755394873568997062729256838005103076899085589} a^{14} - \frac{4876746120015777536537713433963255083124336499067}{60775755394873568997062729256838005103076899085589} a^{12} - \frac{17607166413802411187233041731474191815543992116691}{60775755394873568997062729256838005103076899085589} a^{10} + \frac{8547443707575706046288866528614956965826366346388}{20258585131624522999020909752279335034358966361863} a^{8} - \frac{547526324664375247112034077598622625753315131747}{6752861710541507666340303250759778344786322120621} a^{6} - \frac{13279732502769693977744083712336463407367676747099}{60775755394873568997062729256838005103076899085589} a^{4} + \frac{8866978611433996699981356089813401878792337645088}{20258585131624522999020909752279335034358966361863} a^{2} - \frac{5746901931470695596640392603175113434341320565163}{60775755394873568997062729256838005103076899085589}$, $\frac{1}{60775755394873568997062729256838005103076899085589} a^{21} - \frac{6779608302757189642006603440735201416342199685969}{60775755394873568997062729256838005103076899085589} a^{19} + \frac{2812245330332635710525627388115087732265155146175}{60775755394873568997062729256838005103076899085589} a^{17} + \frac{9105860089710913096384214503212306909000468779894}{60775755394873568997062729256838005103076899085589} a^{15} - \frac{4876746120015777536537713433963255083124336499067}{60775755394873568997062729256838005103076899085589} a^{13} - \frac{17607166413802411187233041731474191815543992116691}{60775755394873568997062729256838005103076899085589} a^{11} + \frac{8547443707575706046288866528614956965826366346388}{20258585131624522999020909752279335034358966361863} a^{9} - \frac{547526324664375247112034077598622625753315131747}{6752861710541507666340303250759778344786322120621} a^{7} - \frac{13279732502769693977744083712336463407367676747099}{60775755394873568997062729256838005103076899085589} a^{5} + \frac{8866978611433996699981356089813401878792337645088}{20258585131624522999020909752279335034358966361863} a^{3} - \frac{5746901931470695596640392603175113434341320565163}{60775755394873568997062729256838005103076899085589} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 80455560934900000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1351680 |
| The 112 conjugacy class representatives for t22n42 are not computed |
| Character table for t22n42 is not computed |
Intermediate fields
| 11.11.31376518243389673201.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 74843 | Data not computed | ||||||