Normalized defining polynomial
\( x^{22} - 4 x^{21} - 15 x^{20} + 186 x^{19} - 340 x^{18} - 190 x^{17} + 1474 x^{16} - 16339 x^{15} + 54779 x^{14} - 48760 x^{13} - 60506 x^{12} + 162742 x^{11} - 382113 x^{10} + 377976 x^{9} + 812112 x^{8} - 662419 x^{7} + 800005 x^{6} + 1654250 x^{5} - 632588 x^{4} - 210361 x^{3} + 534728 x^{2} + 1099550 x + 328525 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(29391360462703563245733396281479720218577=1297^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $69.10$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $1297$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{5} a^{17} + \frac{1}{5} a^{15} + \frac{2}{5} a^{14} + \frac{1}{5} a^{13} - \frac{2}{5} a^{12} - \frac{2}{5} a^{11} + \frac{2}{5} a^{10} - \frac{2}{5} a^{9} + \frac{1}{5} a^{8} + \frac{1}{5} a^{7} + \frac{2}{5} a^{6} - \frac{1}{5} a^{5} - \frac{2}{5} a^{4} - \frac{1}{5} a^{3} + \frac{2}{5} a^{2} + \frac{1}{5} a$, $\frac{1}{5} a^{18} + \frac{1}{5} a^{16} + \frac{2}{5} a^{15} + \frac{1}{5} a^{14} - \frac{2}{5} a^{13} - \frac{2}{5} a^{12} + \frac{2}{5} a^{11} - \frac{2}{5} a^{10} + \frac{1}{5} a^{9} + \frac{1}{5} a^{8} + \frac{2}{5} a^{7} - \frac{1}{5} a^{6} - \frac{2}{5} a^{5} - \frac{1}{5} a^{4} + \frac{2}{5} a^{3} + \frac{1}{5} a^{2}$, $\frac{1}{5} a^{19} + \frac{2}{5} a^{16} + \frac{1}{5} a^{14} + \frac{2}{5} a^{13} - \frac{1}{5} a^{12} - \frac{1}{5} a^{10} - \frac{2}{5} a^{9} + \frac{1}{5} a^{8} - \frac{2}{5} a^{7} + \frac{1}{5} a^{6} - \frac{1}{5} a^{4} + \frac{2}{5} a^{3} - \frac{2}{5} a^{2} - \frac{1}{5} a$, $\frac{1}{5} a^{20} - \frac{1}{5} a^{15} - \frac{2}{5} a^{14} + \frac{2}{5} a^{13} - \frac{1}{5} a^{12} - \frac{2}{5} a^{11} - \frac{1}{5} a^{10} + \frac{1}{5} a^{8} - \frac{1}{5} a^{7} + \frac{1}{5} a^{6} + \frac{1}{5} a^{5} + \frac{1}{5} a^{4} - \frac{2}{5} a$, $\frac{1}{1068283360397668766627345561835932873375440400805828141356719304753878104725002385} a^{21} - \frac{18161650507510684185450867526856294478889976013856256189035049267340481760913682}{1068283360397668766627345561835932873375440400805828141356719304753878104725002385} a^{20} + \frac{55708293120047462323816723374921568726493758000973238873219542387289108875672169}{1068283360397668766627345561835932873375440400805828141356719304753878104725002385} a^{19} + \frac{23110737414197575242053097025478472930907867962436761583890199916482545264147561}{1068283360397668766627345561835932873375440400805828141356719304753878104725002385} a^{18} - \frac{64983577532947316788937026402100533620466797834202253482025330153501301479402772}{1068283360397668766627345561835932873375440400805828141356719304753878104725002385} a^{17} + \frac{463080491537413538071186785151113157903636198324463340531821645904455416173890763}{1068283360397668766627345561835932873375440400805828141356719304753878104725002385} a^{16} + \frac{89382371022675815699113240140830296228074026909536692565434100310375867268530882}{213656672079533753325469112367186574675088080161165628271343860950775620945000477} a^{15} + \frac{510331366438589548855059483708934377986443475432515429495545010876775614592439482}{1068283360397668766627345561835932873375440400805828141356719304753878104725002385} a^{14} - \frac{372403514882721458008891937531992542679570883599584600840012789319126317417614851}{1068283360397668766627345561835932873375440400805828141356719304753878104725002385} a^{13} - \frac{326344833731902206658626627208645782337190615515843274956508041792867304253891527}{1068283360397668766627345561835932873375440400805828141356719304753878104725002385} a^{12} - \frac{454485417355216056005155237115569720800520173354760130273130685834009299141698141}{1068283360397668766627345561835932873375440400805828141356719304753878104725002385} a^{11} - \frac{62608014836392021536043421361924433194539266730322380871273507020065579476526513}{1068283360397668766627345561835932873375440400805828141356719304753878104725002385} a^{10} + \frac{114521032101748789368187139261797348280129159519585448034107791253728474605637173}{1068283360397668766627345561835932873375440400805828141356719304753878104725002385} a^{9} + \frac{53174961275463041025973603797202418687134534441902563728428076220421411805463281}{213656672079533753325469112367186574675088080161165628271343860950775620945000477} a^{8} - \frac{48412348864898216743589414336720506687216813442946427877013770207785614243990233}{213656672079533753325469112367186574675088080161165628271343860950775620945000477} a^{7} + \frac{1107940203406096278677193548298293758496344158834702544926036832086984556562458}{4256109005568401460666715385800529375997770521138757535285734281887960576593635} a^{6} + \frac{382119973983901172131437034168807522201245213353282490613068750569450732557714524}{1068283360397668766627345561835932873375440400805828141356719304753878104725002385} a^{5} - \frac{89899098788492547291157932775054121596491087897708868679279992740678433132522688}{1068283360397668766627345561835932873375440400805828141356719304753878104725002385} a^{4} + \frac{489215618324089570174022532533435602309180152290851901152200454602393284140188047}{1068283360397668766627345561835932873375440400805828141356719304753878104725002385} a^{3} - \frac{423892652095259045710538625317111502702542802956399012221233308845461824332816438}{1068283360397668766627345561835932873375440400805828141356719304753878104725002385} a^{2} - \frac{382863825123573880501177772453154787556608905039042107803013034925110781512404377}{1068283360397668766627345561835932873375440400805828141356719304753878104725002385} a + \frac{53767161229431148390322417780287111733568118696819759145456355710892699774075496}{213656672079533753325469112367186574675088080161165628271343860950775620945000477}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 503003893922 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 22528 |
| The 100 conjugacy class representatives for t22n29 are not computed |
| Character table for t22n29 is not computed |
Intermediate fields
| 11.11.3670285774226257.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/47.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 1297 | Data not computed | ||||||