Normalized defining polynomial
\( x^{22} - 2 x^{21} - 6 x^{20} - 12 x^{19} - 51 x^{18} - 1294 x^{17} - 4139 x^{16} + 11844 x^{15} + 45982 x^{14} + 14721 x^{13} + 173096 x^{12} + 635309 x^{11} - 626140 x^{10} - 2954875 x^{9} + 1702700 x^{8} + 10537521 x^{7} + 4899648 x^{6} - 12306030 x^{5} - 9650007 x^{4} + 20971742 x^{3} + 32748639 x^{2} + 9514395 x - 381517 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(29391360462703563245733396281479720218577=1297^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $69.10$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $1297$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{55} a^{18} + \frac{2}{5} a^{17} + \frac{2}{55} a^{15} - \frac{1}{5} a^{14} + \frac{1}{11} a^{13} + \frac{24}{55} a^{12} + \frac{4}{55} a^{11} + \frac{4}{55} a^{10} + \frac{1}{55} a^{9} - \frac{2}{5} a^{8} - \frac{2}{11} a^{7} - \frac{14}{55} a^{6} + \frac{14}{55} a^{5} + \frac{12}{55} a^{4} + \frac{19}{55} a^{3} - \frac{27}{55} a^{2} - \frac{16}{55} a + \frac{27}{55}$, $\frac{1}{55} a^{19} + \frac{1}{5} a^{17} + \frac{2}{55} a^{16} + \frac{27}{55} a^{14} + \frac{24}{55} a^{13} + \frac{26}{55} a^{12} + \frac{26}{55} a^{11} + \frac{23}{55} a^{10} + \frac{1}{5} a^{9} - \frac{21}{55} a^{8} - \frac{14}{55} a^{7} - \frac{8}{55} a^{6} - \frac{21}{55} a^{5} - \frac{5}{11} a^{4} - \frac{1}{11} a^{3} - \frac{27}{55} a^{2} - \frac{6}{55} a + \frac{1}{5}$, $\frac{1}{55} a^{20} - \frac{4}{11} a^{17} + \frac{1}{11} a^{15} - \frac{4}{11} a^{14} + \frac{26}{55} a^{13} - \frac{18}{55} a^{12} - \frac{21}{55} a^{11} + \frac{2}{5} a^{10} + \frac{23}{55} a^{9} + \frac{8}{55} a^{8} - \frac{8}{55} a^{7} + \frac{23}{55} a^{6} - \frac{14}{55} a^{5} - \frac{27}{55} a^{4} - \frac{16}{55} a^{3} + \frac{16}{55} a^{2} + \frac{2}{5} a - \frac{2}{5}$, $\frac{1}{14926688683057352573857744837344215980009259068070117321893868992151709524150039155} a^{21} + \frac{21157022646491117040898050321779223639149358730640806999864361175072108436536154}{14926688683057352573857744837344215980009259068070117321893868992151709524150039155} a^{20} + \frac{999432987221568635062539577400651739456427008725231021564291578460924733214651}{14926688683057352573857744837344215980009259068070117321893868992151709524150039155} a^{19} - \frac{133633543678712779423861680557163467717401420762468860937134819386788836384384406}{14926688683057352573857744837344215980009259068070117321893868992151709524150039155} a^{18} + \frac{2777139095278503994978851105878251212402630767273329606435148442523768864046341099}{14926688683057352573857744837344215980009259068070117321893868992151709524150039155} a^{17} + \frac{1661278438026266212839366688736142425517265917590652930439488775781581114587641687}{14926688683057352573857744837344215980009259068070117321893868992151709524150039155} a^{16} + \frac{1779693054080980012924576233626571376693690434584409450330381127581330116403455933}{14926688683057352573857744837344215980009259068070117321893868992151709524150039155} a^{15} - \frac{1828833151708239025179745755324907718485459755886639176081644587340450450331511266}{14926688683057352573857744837344215980009259068070117321893868992151709524150039155} a^{14} + \frac{976563758894335542322345829967613898172547871006327671974550547429379361046889681}{2985337736611470514771548967468843196001851813614023464378773798430341904830007831} a^{13} + \frac{625020847672256242683538095183367634530051678193971995115471947019853864895718129}{1356971698459759324896158621576746907273569006188192483808533544741064502195458105} a^{12} + \frac{395481554243833533713625525877928218839411792251731705991588546308985510815862175}{2985337736611470514771548967468843196001851813614023464378773798430341904830007831} a^{11} - \frac{985969072400679614948895172567825885758618806286115923944905493691254887076415202}{2985337736611470514771548967468843196001851813614023464378773798430341904830007831} a^{10} + \frac{78943254007869504590712044406003845561785939260088904360808082384192445178948389}{271394339691951864979231724315349381454713801237638496761706708948212900439091621} a^{9} + \frac{919690673553441545039139656057898020621262198641274227866540907935443099639720287}{2985337736611470514771548967468843196001851813614023464378773798430341904830007831} a^{8} + \frac{5006529466566455164865108431964257913180631473924769586597196626526455376254937002}{14926688683057352573857744837344215980009259068070117321893868992151709524150039155} a^{7} + \frac{6758021079265999747337693385117214761536254403689295541807751709749510638673649279}{14926688683057352573857744837344215980009259068070117321893868992151709524150039155} a^{6} + \frac{1555020051234833749462711948811841691044779270377511168965340944596232867389435572}{14926688683057352573857744837344215980009259068070117321893868992151709524150039155} a^{5} + \frac{3917128935094313833187875552269441092691049200073699850071132712380508712546374609}{14926688683057352573857744837344215980009259068070117321893868992151709524150039155} a^{4} - \frac{6671151133880092427202139026517714461360260264058729928838298631409823147654351657}{14926688683057352573857744837344215980009259068070117321893868992151709524150039155} a^{3} - \frac{3988900767040502362097024567979569433237805038246641689653853629736683207151937119}{14926688683057352573857744837344215980009259068070117321893868992151709524150039155} a^{2} + \frac{6973765953414871310638526026801086045218672901664469299701129639434163513322860196}{14926688683057352573857744837344215980009259068070117321893868992151709524150039155} a + \frac{294653706677380695945599886046331469212036076673811367842551736193748539637365611}{1356971698459759324896158621576746907273569006188192483808533544741064502195458105}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 99230298736.2 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 22528 |
| The 100 conjugacy class representatives for t22n29 are not computed |
| Character table for t22n29 is not computed |
Intermediate fields
| 11.11.3670285774226257.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/13.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/19.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{5}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/47.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 1297 | Data not computed | ||||||