Normalized defining polynomial
\( x^{22} - 11 x^{21} + 44 x^{20} - 44 x^{19} - 231 x^{18} + 825 x^{17} - 550 x^{16} - 1540 x^{15} - 968 x^{14} + 23056 x^{13} - 65956 x^{12} + 98910 x^{11} - 90409 x^{10} + 22077 x^{9} + 172414 x^{8} - 515240 x^{7} + 704264 x^{6} - 400400 x^{5} - 37840 x^{4} + 72512 x^{3} + 32560 x^{2} + 3696 x - 9888 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2661248664423333685102326194280333312=2^{24}\cdot 3^{11}\cdot 11^{23}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $45.26$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{16} - \frac{1}{4} a^{15} - \frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{17} - \frac{1}{4} a^{15} - \frac{1}{4} a^{13} - \frac{1}{4} a^{11} - \frac{1}{4} a^{5} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{18} - \frac{1}{8} a^{17} - \frac{1}{4} a^{15} + \frac{1}{8} a^{14} - \frac{1}{8} a^{13} - \frac{1}{4} a^{12} - \frac{1}{4} a^{11} + \frac{1}{4} a^{7} + \frac{3}{8} a^{6} - \frac{1}{8} a^{5} + \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{16} a^{19} - \frac{1}{16} a^{18} - \frac{1}{8} a^{17} + \frac{1}{16} a^{15} - \frac{1}{16} a^{14} - \frac{1}{4} a^{13} - \frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{8} a^{8} - \frac{5}{16} a^{7} + \frac{3}{16} a^{6} - \frac{1}{2} a^{4} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{32} a^{20} - \frac{1}{32} a^{19} - \frac{1}{16} a^{17} - \frac{3}{32} a^{16} - \frac{1}{32} a^{15} + \frac{3}{16} a^{14} + \frac{1}{16} a^{13} - \frac{1}{4} a^{12} - \frac{1}{8} a^{11} + \frac{1}{8} a^{10} - \frac{1}{16} a^{9} + \frac{11}{32} a^{8} + \frac{15}{32} a^{7} + \frac{7}{16} a^{6} + \frac{7}{16} a^{5} + \frac{1}{8} a^{3} + \frac{1}{4} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{280020657167251580015667237342099955541564749177760} a^{21} - \frac{480212776090060817642474007913493572916729867519}{35002582145906447501958404667762494442695593647220} a^{20} - \frac{7286551491179744056817639311227135341057985343339}{280020657167251580015667237342099955541564749177760} a^{19} - \frac{45728295747898829886611460591459307911772248588}{1750129107295322375097920233388124722134779682361} a^{18} - \frac{9137836420447236740840755586862416403135439311321}{280020657167251580015667237342099955541564749177760} a^{17} - \frac{5432076264236533692775531169807307005516045060921}{70005164291812895003916809335524988885391187294440} a^{16} + \frac{25811502164406400067351552703280336168556125281819}{280020657167251580015667237342099955541564749177760} a^{15} - \frac{30842420962699390063837827200570284514388364371467}{140010328583625790007833618671049977770782374588880} a^{14} + \frac{33672792126273623660225415452349959233614965145773}{140010328583625790007833618671049977770782374588880} a^{13} + \frac{2264312523893865508263224401271917592449499496269}{14001032858362579000783361867104997777078237458888} a^{12} - \frac{2456354239976061494293949158237821201181873738071}{17501291072953223750979202333881247221347796823610} a^{11} + \frac{25102324487168124333027857941073901895550854354853}{140010328583625790007833618671049977770782374588880} a^{10} + \frac{2004742272976549386119512247438779099676731487613}{56004131433450316003133447468419991108312949835552} a^{9} - \frac{21272540743233585130254450965162430432352178809269}{140010328583625790007833618671049977770782374588880} a^{8} + \frac{19559473879962385120822958529014453138139839306927}{280020657167251580015667237342099955541564749177760} a^{7} + \frac{27442198357877286492380669750587928239300174977219}{140010328583625790007833618671049977770782374588880} a^{6} + \frac{650323487441593214877769468546664775411783349591}{10770025275663522308294893743926921366983259583760} a^{5} + \frac{708510762994883417427655320015923658970742411087}{5385012637831761154147446871963460683491629791880} a^{4} - \frac{12469022278062730830144326054393356304819738825841}{70005164291812895003916809335524988885391187294440} a^{3} - \frac{15612279801624093833627934972211087825855334844923}{35002582145906447501958404667762494442695593647220} a^{2} + \frac{10176283039135265672156409843805579877578883293613}{35002582145906447501958404667762494442695593647220} a - \frac{7402252283634789907396576089705805801076002986773}{17501291072953223750979202333881247221347796823610}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 158674344921 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1320 |
| The 13 conjugacy class representatives for t22n14 |
| Character table for t22n14 |
Intermediate fields
| \(\Q(\sqrt{33}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 2.4.6.7 | $x^{4} + 2 x^{3} + 2 x^{2} + 2$ | $4$ | $1$ | $6$ | $A_4$ | $[2, 2]^{3}$ | |
| 2.4.6.7 | $x^{4} + 2 x^{3} + 2 x^{2} + 2$ | $4$ | $1$ | $6$ | $A_4$ | $[2, 2]^{3}$ | |
| 2.6.6.1 | $x^{6} + x^{2} - 1$ | $2$ | $3$ | $6$ | $A_4$ | $[2, 2]^{3}$ | |
| 2.6.6.1 | $x^{6} + x^{2} - 1$ | $2$ | $3$ | $6$ | $A_4$ | $[2, 2]^{3}$ | |
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 11 | Data not computed | ||||||