Normalized defining polynomial
\( x^{22} - x^{21} - 21 x^{20} + 80 x^{19} + 190 x^{18} - 2730 x^{17} - 2370 x^{16} + 23040 x^{15} - 11685 x^{14} - 139255 x^{13} + 66637 x^{12} + 883188 x^{11} - 858962 x^{10} - 5154490 x^{9} + 11455530 x^{8} - 94992 x^{7} - 23559708 x^{6} + 24631212 x^{5} + 1602700 x^{4} - 21497200 x^{3} + 16049640 x^{2} + 8247560 x - 1432040 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(24794911296000000000000000000000000000000000000=2^{42}\cdot 3^{18}\cdot 5^{36}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $128.48$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{13} - \frac{1}{4} a^{12} + \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{12} - \frac{1}{2} a^{8} + \frac{1}{4} a^{7} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{20} a^{16} + \frac{1}{10} a^{15} - \frac{1}{4} a^{13} + \frac{1}{5} a^{11} - \frac{1}{10} a^{10} - \frac{1}{2} a^{9} + \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{10} a^{6} + \frac{1}{20} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{20} a^{17} + \frac{1}{20} a^{15} - \frac{1}{4} a^{13} + \frac{1}{5} a^{12} + \frac{1}{5} a^{10} + \frac{1}{4} a^{9} - \frac{1}{2} a^{8} - \frac{7}{20} a^{7} - \frac{7}{20} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{240} a^{18} - \frac{1}{240} a^{17} - \frac{1}{240} a^{16} - \frac{1}{12} a^{14} + \frac{1}{60} a^{13} - \frac{1}{10} a^{12} + \frac{7}{30} a^{11} + \frac{7}{48} a^{10} + \frac{13}{48} a^{9} - \frac{7}{240} a^{8} + \frac{23}{60} a^{7} + \frac{3}{10} a^{6} + \frac{1}{6} a^{5} - \frac{1}{3} a^{4} - \frac{1}{2} a^{3} + \frac{1}{12} a^{2} - \frac{5}{12} a - \frac{1}{12}$, $\frac{1}{1200} a^{19} - \frac{13}{600} a^{17} - \frac{13}{1200} a^{16} - \frac{8}{75} a^{15} - \frac{1}{75} a^{14} - \frac{1}{6} a^{13} - \frac{31}{300} a^{12} + \frac{163}{1200} a^{11} - \frac{53}{300} a^{10} - \frac{271}{600} a^{9} - \frac{43}{240} a^{8} + \frac{2}{75} a^{7} - \frac{43}{150} a^{6} - \frac{31}{300} a^{5} + \frac{17}{60} a^{4} + \frac{5}{12} a^{3} + \frac{2}{15} a^{2} + \frac{2}{5} a + \frac{29}{60}$, $\frac{1}{1200} a^{20} - \frac{1}{1200} a^{18} + \frac{11}{600} a^{17} + \frac{9}{400} a^{16} + \frac{13}{150} a^{15} - \frac{1}{12} a^{14} - \frac{1}{50} a^{13} + \frac{103}{1200} a^{12} + \frac{9}{100} a^{11} + \frac{71}{400} a^{10} + \frac{17}{40} a^{9} + \frac{157}{1200} a^{8} + \frac{3}{100} a^{7} - \frac{121}{300} a^{6} + \frac{5}{12} a^{5} - \frac{11}{30} a^{3} - \frac{11}{60} a^{2} + \frac{2}{5} a + \frac{1}{12}$, $\frac{1}{1022998578360306434855715457065392736521819767432638898953571073069451084000} a^{21} + \frac{233073232129786341169406563809585904027034004932110932265363961094429}{6686265218041218528468728477551586513214508283873456855905693288035628000} a^{20} - \frac{20411332943012118978417701564821009876491716856602455179630557853067957}{68199905224020428990381030471026182434787984495509259930238071537963405600} a^{19} + \frac{18199176527669467053322461033795449450847383359574305957037846317161283}{51149928918015321742785772853269636826090988371631944947678553653472554200} a^{18} - \frac{167131641870224296895443658456134277721277595448904441608666878000321841}{11366650870670071498396838411837697072464664082584876655039678589660567600} a^{17} + \frac{10354507566114655649930698551524897075688038074475425343809003128883435}{1363998104480408579807620609420523648695759689910185198604761430759268112} a^{16} - \frac{10490189584420027975605905857458601383793226908062952166078605052517197}{1311536638923469788276558278288965046822845855682870383273809068037757800} a^{15} - \frac{183229999547092482330857275681514148137629634072271325061032258696494997}{2131247038250638405949407202219568201087124515484664372819939735561356425} a^{14} + \frac{12516186896372335651269354795938724792541075220769012365233531599527721661}{68199905224020428990381030471026182434787984495509259930238071537963405600} a^{13} - \frac{9556145980241109661277554783199102985173981209888751484477556604044360861}{40919943134412257394228618282615709460872790697305555958142842922778043360} a^{12} + \frac{29379099776515138710485730677386016881064607592691568163097951818297076329}{340999526120102144951905152355130912173939922477546299651190357689817028000} a^{11} - \frac{1228138922269714483053534566706167530744588659496095704080135171934109721}{10656235191253192029747036011097841005435622577423321864099698677806782125} a^{10} + \frac{1497993622022541859719507968810202369593525749842982152438453175501643111}{6017638696237096675621855629796427861893057455486111170315123959232065200} a^{9} - \frac{3586841917793931785113758457158067487908109539480265749645834955842974503}{11366650870670071498396838411837697072464664082584876655039678589660567600} a^{8} - \frac{3056826174074099800302689355378077902118052081130042574125448923279599001}{17049976306005107247595257617756545608696996123877314982559517884490851400} a^{7} + \frac{5185177153987823985285905135605996918029482447187705448028964779715126518}{10656235191253192029747036011097841005435622577423321864099698677806782125} a^{6} - \frac{3188900548636832224985684160229885201212258908260681179886915669486104149}{28416627176675178745992096029594242681161660206462191637599196474151419000} a^{5} + \frac{120953514814893382912997428509111266134351023918361255235070240047508793}{681999052240204289903810304710261824347879844955092599302380715379634056} a^{4} + \frac{73773144592681126393427082883642202730647539516670814126833978401164911}{157384396670816374593186993394675805618741502681944445992857088164530936} a^{3} + \frac{34353984369103881840102764555315844035048096003422290435157798537420592}{142083135883375893729960480147971213405808301032310958187995982370757095} a^{2} - \frac{205809682905189498702976340792599640148558913765714403834742231644249911}{655768319461734894138279139144482523411422927841435191636904534018878900} a - \frac{4937575435367509680058023043866263568275207784668024651230725022321922203}{25574964459007660871392886426634818413045494185815972473839276826736277100}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 24347082785000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 8110080 |
| The 52 conjugacy class representatives for t22n43 are not computed |
| Character table for t22n43 is not computed |
Intermediate fields
| 11.3.6561000000000000000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/37.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.8.16.9 | $x^{8} + 2 x^{4} + 8 x + 12$ | $4$ | $2$ | $16$ | $S_4$ | $[8/3, 8/3]_{3}^{2}$ | |
| 2.12.26.35 | $x^{12} + 2 x^{8} + 4 x^{5} + 2 x^{4} + 4 x^{3} - 2$ | $12$ | $1$ | $26$ | 12T27 | $[2, 8/3, 8/3]_{3}^{2}$ | |
| 3 | Data not computed | ||||||
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 5.5.9.4 | $x^{5} + 30$ | $5$ | $1$ | $9$ | $F_5$ | $[9/4]_{4}$ | |
| 5.5.9.4 | $x^{5} + 30$ | $5$ | $1$ | $9$ | $F_5$ | $[9/4]_{4}$ | |
| 5.5.9.4 | $x^{5} + 30$ | $5$ | $1$ | $9$ | $F_5$ | $[9/4]_{4}$ | |
| 5.5.9.4 | $x^{5} + 30$ | $5$ | $1$ | $9$ | $F_5$ | $[9/4]_{4}$ | |