Normalized defining polynomial
\( x^{22} - 22 x^{18} + 88 x^{16} - 484 x^{15} - 1232 x^{14} - 352 x^{13} - 8448 x^{12} - 11888 x^{11} + 8712 x^{10} - 54208 x^{9} + 42592 x^{8} + 256608 x^{7} - 547888 x^{6} - 399168 x^{5} + 878944 x^{4} - 1636800 x^{3} - 2798048 x^{2} + 297088 x + 734816 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(24689900716543842090569619202412690538496=2^{30}\cdot 7^{10}\cdot 11^{22}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $68.55$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{4} a^{9}$, $\frac{1}{4} a^{10}$, $\frac{1}{44} a^{11} - \frac{1}{11}$, $\frac{1}{44} a^{12} - \frac{1}{11} a$, $\frac{1}{44} a^{13} - \frac{1}{11} a^{2}$, $\frac{1}{88} a^{14} + \frac{5}{11} a^{3}$, $\frac{1}{88} a^{15} + \frac{5}{11} a^{4}$, $\frac{1}{88} a^{16} - \frac{1}{22} a^{5}$, $\frac{1}{88} a^{17} - \frac{1}{22} a^{6}$, $\frac{1}{176} a^{18} + \frac{5}{22} a^{7}$, $\frac{1}{176} a^{19} + \frac{5}{22} a^{8}$, $\frac{1}{176} a^{20} - \frac{1}{44} a^{9}$, $\frac{1}{118101010161715742545729952328990968847011892016} a^{21} + \frac{88923895830210436325240967668784507245949895}{59050505080857871272864976164495484423505946008} a^{20} - \frac{1538011778671579753990559942072583850553283}{671028466827930355373465638232903232085294841} a^{19} - \frac{1886259866264459225549029371377248440403822}{7381313135107233909108122020561935552938243251} a^{18} + \frac{332732146832171463409564951390090039540224977}{59050505080857871272864976164495484423505946008} a^{17} + \frac{293026330654871694690193686920842490931086655}{59050505080857871272864976164495484423505946008} a^{16} - \frac{1351707175559926218877611586867256793037791}{1342056933655860710746931276465806464170589682} a^{15} + \frac{113643843243988997631864032936890316035873341}{29525252540428935636432488082247742211752973004} a^{14} + \frac{30819810233902697350294046968867414724667014}{7381313135107233909108122020561935552938243251} a^{13} + \frac{150807830153341885062566613463178965757620585}{14762626270214467818216244041123871105876486502} a^{12} + \frac{49402268189155059551923035997967704465799341}{7381313135107233909108122020561935552938243251} a^{11} + \frac{226085507182790924867083172005675884752823160}{7381313135107233909108122020561935552938243251} a^{10} + \frac{1316023868513314470967697322757677300773984467}{29525252540428935636432488082247742211752973004} a^{9} - \frac{99788705143474354470525221556461643847098165}{1342056933655860710746931276465806464170589682} a^{8} - \frac{65995083286449574590367389181000638169318489}{14762626270214467818216244041123871105876486502} a^{7} + \frac{1969178119348931700629276534731885602949616297}{14762626270214467818216244041123871105876486502} a^{6} - \frac{2513915804306932510456243379838604747203824661}{14762626270214467818216244041123871105876486502} a^{5} - \frac{91959664395572284634849295063884570899211453}{671028466827930355373465638232903232085294841} a^{4} - \frac{223996920146923424528238154404756297903387852}{7381313135107233909108122020561935552938243251} a^{3} + \frac{2732558077041623256615464710423727238801793084}{7381313135107233909108122020561935552938243251} a^{2} + \frac{3084513913496011838492648084932179219534005141}{7381313135107233909108122020561935552938243251} a + \frac{3560950645723592209212278743182859497121798806}{7381313135107233909108122020561935552938243251}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1781125148300 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 112640 |
| The 44 conjugacy class representatives for t22n34 |
| Character table for t22n34 is not computed |
Intermediate fields
| 11.11.4910318845910094848.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ | $20{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | $20{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 7.10.5.1 | $x^{10} - 98 x^{6} + 2401 x^{2} - 268912$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 7.10.5.1 | $x^{10} - 98 x^{6} + 2401 x^{2} - 268912$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $11$ | 11.11.11.6 | $x^{11} + 11 x + 11$ | $11$ | $1$ | $11$ | $F_{11}$ | $[11/10]_{10}$ |
| 11.11.11.6 | $x^{11} + 11 x + 11$ | $11$ | $1$ | $11$ | $F_{11}$ | $[11/10]_{10}$ | |