Normalized defining polynomial
\( x^{22} - x^{21} - 11 x^{20} + 37 x^{19} - 125 x^{18} - 206 x^{17} + 947 x^{16} - 1002 x^{15} + 693 x^{14} - 867 x^{13} - 2005 x^{12} + 50723 x^{11} - 26677 x^{10} - 11638 x^{9} + 87302 x^{8} + 129837 x^{7} + 279630 x^{6} - 109510 x^{5} - 453150 x^{4} - 37802 x^{3} + 155367 x^{2} - 17135 x - 36319 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(22661033510180079603495293971842498241=1297^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $49.88$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $1297$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{31} a^{19} - \frac{15}{31} a^{18} + \frac{12}{31} a^{17} + \frac{12}{31} a^{16} + \frac{7}{31} a^{15} + \frac{11}{31} a^{14} - \frac{3}{31} a^{13} - \frac{13}{31} a^{12} - \frac{8}{31} a^{11} - \frac{10}{31} a^{10} + \frac{13}{31} a^{9} - \frac{11}{31} a^{8} - \frac{9}{31} a^{7} - \frac{10}{31} a^{6} - \frac{13}{31} a^{5} + \frac{10}{31} a^{4} - \frac{2}{31} a^{3} + \frac{10}{31} a^{2} + \frac{3}{31} a - \frac{11}{31}$, $\frac{1}{12245} a^{20} - \frac{36}{12245} a^{19} + \frac{823}{12245} a^{18} - \frac{3557}{12245} a^{17} + \frac{5242}{12245} a^{16} + \frac{5196}{12245} a^{15} - \frac{1138}{2449} a^{14} + \frac{732}{12245} a^{13} - \frac{2587}{12245} a^{12} + \frac{5366}{12245} a^{11} + \frac{192}{12245} a^{10} + \frac{5637}{12245} a^{9} - \frac{429}{12245} a^{8} - \frac{857}{2449} a^{7} + \frac{5281}{12245} a^{6} + \frac{3972}{12245} a^{5} - \frac{3746}{12245} a^{4} + \frac{1168}{12245} a^{3} + \frac{506}{12245} a^{2} + \frac{537}{2449} a + \frac{5811}{12245}$, $\frac{1}{570736974921039490346815968841846278684757536843439629312955045} a^{21} + \frac{3229011939680021072325741654194731519910998024617520471482}{114147394984207898069363193768369255736951507368687925862591009} a^{20} - \frac{8056748647376414488936601604935785461553367669271390433625893}{570736974921039490346815968841846278684757536843439629312955045} a^{19} - \frac{118585841978549998734758477319054465327942175450550838424161119}{570736974921039490346815968841846278684757536843439629312955045} a^{18} - \frac{36237411620360060318219147275367633490615628786909109820580938}{114147394984207898069363193768369255736951507368687925862591009} a^{17} + \frac{28446144438069563785649081190070245700204356776980199339769908}{570736974921039490346815968841846278684757536843439629312955045} a^{16} + \frac{38030189353814269473314636858398206088914317612795764245730101}{570736974921039490346815968841846278684757536843439629312955045} a^{15} + \frac{188308075802652047642587293241700584235851185735483257707514142}{570736974921039490346815968841846278684757536843439629312955045} a^{14} - \frac{9441876725773661432835375860615571278687964314271212108462933}{114147394984207898069363193768369255736951507368687925862591009} a^{13} - \frac{235723058105932614015460925955403179478162520803600984607433441}{570736974921039490346815968841846278684757536843439629312955045} a^{12} + \frac{156873155900478935832242987189322431649875794110378796913908618}{570736974921039490346815968841846278684757536843439629312955045} a^{11} - \frac{196865196112939422038206369966700809780713488556389778053578011}{570736974921039490346815968841846278684757536843439629312955045} a^{10} - \frac{139778947343997184229102591803966267139501861347215089758581217}{570736974921039490346815968841846278684757536843439629312955045} a^{9} + \frac{233048487526265158791243271696208776736221878638392700922079331}{570736974921039490346815968841846278684757536843439629312955045} a^{8} + \frac{170478003609461709108600136781220623221100477586576895603666201}{570736974921039490346815968841846278684757536843439629312955045} a^{7} - \frac{108705579371573291438339262845777543940692768399960872513418037}{570736974921039490346815968841846278684757536843439629312955045} a^{6} - \frac{126115758195858764593313700580385257001247626367702135340405174}{570736974921039490346815968841846278684757536843439629312955045} a^{5} - \frac{219386007703659616361729074475767677494581103731977119605724378}{570736974921039490346815968841846278684757536843439629312955045} a^{4} - \frac{122625544340584820552425864876294981717875768654300138631942666}{570736974921039490346815968841846278684757536843439629312955045} a^{3} - \frac{14566203200444151299145321322067802061412231201184116604948839}{570736974921039490346815968841846278684757536843439629312955045} a^{2} + \frac{51689034892834133345052160385034168796934547900427021891607031}{570736974921039490346815968841846278684757536843439629312955045} a - \frac{131279106048364448760152783038733844614458629327697796775814414}{570736974921039490346815968841846278684757536843439629312955045}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 17417733592.5 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 22528 |
| The 100 conjugacy class representatives for t22n30 are not computed |
| Character table for t22n30 is not computed |
Intermediate fields
| 11.11.3670285774226257.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/47.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 1297 | Data not computed | ||||||