Normalized defining polynomial
\( x^{22} - 8 x^{21} + 2 x^{20} + 230 x^{19} - 1505 x^{18} + 6870 x^{17} - 27520 x^{16} + 77780 x^{15} - 68060 x^{14} - 492220 x^{13} + 2296746 x^{12} - 3440848 x^{11} - 3621813 x^{10} + 19400180 x^{9} - 9455860 x^{8} - 50400306 x^{7} + 24093413 x^{6} + 195342878 x^{5} - 239853960 x^{4} + 24810140 x^{3} - 38189098 x^{2} + 44518604 x - 445526 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1937102445000000000000000000000000000000000000=2^{36}\cdot 3^{18}\cdot 5^{37}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $114.42$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{5} a^{11} - \frac{1}{5} a^{10} - \frac{1}{5} a^{6} + \frac{1}{5} a^{5} - \frac{2}{5} a + \frac{2}{5}$, $\frac{1}{5} a^{12} - \frac{1}{5} a^{10} - \frac{1}{5} a^{7} + \frac{1}{5} a^{5} - \frac{2}{5} a^{2} + \frac{2}{5}$, $\frac{1}{5} a^{13} - \frac{1}{5} a^{10} - \frac{1}{5} a^{8} + \frac{1}{5} a^{5} - \frac{2}{5} a^{3} + \frac{2}{5}$, $\frac{1}{25} a^{14} - \frac{2}{25} a^{13} - \frac{2}{25} a^{12} - \frac{12}{25} a^{10} - \frac{1}{25} a^{9} - \frac{8}{25} a^{8} - \frac{3}{25} a^{7} - \frac{1}{5} a^{6} + \frac{2}{25} a^{5} - \frac{2}{25} a^{4} - \frac{11}{25} a^{3} - \frac{1}{25} a^{2} - \frac{2}{5} a - \frac{1}{25}$, $\frac{1}{25} a^{15} - \frac{1}{25} a^{13} + \frac{1}{25} a^{12} - \frac{2}{25} a^{11} + \frac{1}{5} a^{10} - \frac{2}{5} a^{9} + \frac{1}{25} a^{8} + \frac{9}{25} a^{7} + \frac{7}{25} a^{6} - \frac{3}{25} a^{5} + \frac{2}{5} a^{4} - \frac{8}{25} a^{3} + \frac{3}{25} a^{2} + \frac{9}{25} a - \frac{12}{25}$, $\frac{1}{50} a^{16} + \frac{2}{25} a^{13} + \frac{1}{50} a^{12} + \frac{23}{50} a^{10} - \frac{2}{25} a^{8} + \frac{12}{25} a^{7} - \frac{3}{50} a^{6} - \frac{4}{25} a^{5} - \frac{1}{5} a^{4} - \frac{9}{25} a^{3} - \frac{1}{25} a^{2} - \frac{6}{25} a - \frac{8}{25}$, $\frac{1}{100} a^{17} - \frac{1}{100} a^{16} - \frac{1}{50} a^{15} - \frac{1}{50} a^{14} + \frac{1}{100} a^{13} + \frac{9}{100} a^{12} + \frac{7}{100} a^{11} - \frac{31}{100} a^{10} + \frac{11}{50} a^{9} + \frac{17}{50} a^{8} + \frac{23}{100} a^{7} - \frac{19}{100} a^{6} - \frac{19}{50} a^{5} - \frac{4}{25} a^{4} + \frac{9}{50} a^{3} - \frac{1}{10} a^{2} - \frac{11}{50} a - \frac{7}{50}$, $\frac{1}{100} a^{18} - \frac{1}{100} a^{16} - \frac{1}{100} a^{14} - \frac{3}{50} a^{13} + \frac{1}{50} a^{12} + \frac{2}{25} a^{11} - \frac{43}{100} a^{10} + \frac{4}{25} a^{9} - \frac{27}{100} a^{8} + \frac{2}{25} a^{7} + \frac{1}{4} a^{6} + \frac{9}{50} a^{5} + \frac{11}{50} a^{4} - \frac{1}{5} a^{3} + \frac{4}{25} a^{2} - \frac{1}{25} a + \frac{3}{50}$, $\frac{1}{500} a^{19} - \frac{1}{250} a^{18} - \frac{1}{250} a^{17} - \frac{1}{100} a^{16} - \frac{7}{500} a^{15} + \frac{1}{250} a^{14} - \frac{39}{500} a^{13} - \frac{9}{500} a^{12} + \frac{1}{50} a^{11} - \frac{99}{500} a^{10} - \frac{21}{100} a^{9} - \frac{8}{25} a^{8} - \frac{21}{50} a^{7} + \frac{7}{20} a^{6} - \frac{1}{25} a^{5} - \frac{14}{125} a^{4} - \frac{29}{250} a^{3} + \frac{11}{250} a^{2} - \frac{2}{5} a + \frac{71}{250}$, $\frac{1}{1500} a^{20} - \frac{1}{1500} a^{19} + \frac{1}{250} a^{18} + \frac{1}{500} a^{17} - \frac{1}{750} a^{16} - \frac{1}{300} a^{15} - \frac{7}{1500} a^{14} - \frac{3}{250} a^{13} + \frac{41}{1500} a^{12} + \frac{121}{1500} a^{11} - \frac{287}{750} a^{10} - \frac{43}{100} a^{9} + \frac{26}{75} a^{8} + \frac{33}{100} a^{7} - \frac{127}{300} a^{6} + \frac{61}{375} a^{5} - \frac{137}{750} a^{4} + \frac{32}{125} a^{3} + \frac{161}{750} a^{2} + \frac{117}{250} a + \frac{341}{750}$, $\frac{1}{724128740346236851657511899901547185494905334306116428736071172502763902995000} a^{21} + \frac{39081757658752765750307900295932973613731637979170258408471091352733505303}{241376246782078950552503966633849061831635111435372142912023724167587967665000} a^{20} + \frac{108025280613971582058206433993659475240237271202562047779568706108745113853}{144825748069247370331502379980309437098981066861223285747214234500552780599000} a^{19} + \frac{161613705039846236749484638727259415156490897162522111519245934459789491193}{48275249356415790110500793326769812366327022287074428582404744833517593533000} a^{18} + \frac{28817591531202301554457357913440428700829905356364507216710371165801346793}{72412874034623685165751189990154718549490533430611642873607117250276390299500} a^{17} - \frac{427407038078873595873835576649850867844750927884715913354782409877846239083}{72412874034623685165751189990154718549490533430611642873607117250276390299500} a^{16} + \frac{3133347031615404500385226504243336619141422201234596495068927186578408391}{482752493564157901105007933267698123663270222870744285824047448335175935330} a^{15} + \frac{346855750383353193719962049977800425539232249476068312646803716947084200427}{36206437017311842582875594995077359274745266715305821436803558625138195149750} a^{14} + \frac{3581435881598975228151563587431801485697039692478358283479599004420972577249}{72412874034623685165751189990154718549490533430611642873607117250276390299500} a^{13} - \frac{9480597999565260870425397032881206394520695919393913602604818105782324476}{241376246782078950552503966633849061831635111435372142912023724167587967665} a^{12} + \frac{907357236413567613831085576055863120781595121565639279466239952685622346521}{120688123391039475276251983316924530915817555717686071456011862083793983832500} a^{11} + \frac{43953846232615179710678815342358138984769316589174499064724793703838616813851}{181032185086559212914377974975386796373726333576529107184017793125690975748750} a^{10} + \frac{41482997455550611538678038241852621932424613069449573337426790277524369362377}{144825748069247370331502379980309437098981066861223285747214234500552780599000} a^{9} - \frac{3281250756399040922226803709178777672715555285399178067897790062058393093}{9407323681016393006268423512848940376679510676273029278805731373858576200} a^{8} - \frac{6331010404024788669939452439467047222061694542812972064509695988261966809007}{144825748069247370331502379980309437098981066861223285747214234500552780599000} a^{7} + \frac{57973449835475953408474517000195097614312632825184180284291726280633818140449}{724128740346236851657511899901547185494905334306116428736071172502763902995000} a^{6} - \frac{30544775489192468661539100065965564186151357455168577842841174219451487169459}{120688123391039475276251983316924530915817555717686071456011862083793983832500} a^{5} - \frac{604855391124563386823965725533256947144780805228412066439976373629246783403}{7241287403462368516575118999015471854949053343061164287360711725027639029950} a^{4} - \frac{3166244514467430267401341286431583712288884124440807955819493733674405969238}{18103218508655921291437797497538679637372633357652910718401779312569097574875} a^{3} + \frac{1088063143485305113377479790218805418789264924941410544190674304408684578022}{18103218508655921291437797497538679637372633357652910718401779312569097574875} a^{2} + \frac{112634564402177043103907458296504605242147180536718956949520681385844157139611}{362064370173118425828755949950773592747452667153058214368035586251381951497500} a + \frac{129957652550152303391956017324246337913739067353734274887931417573595462666799}{362064370173118425828755949950773592747452667153058214368035586251381951497500}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3889643769660000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 15840 |
| The 20 conjugacy class representatives for t22n26 |
| Character table for t22n26 |
Intermediate fields
| 11.3.6561000000000000000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 22 sibling: | data not computed |
| Degree 24 sibling: | data not computed |
| Degree 44 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | $22$ | ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | $22$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.6.10.4 | $x^{6} + 2 x^{5} + 2 x^{4} + 6$ | $6$ | $1$ | $10$ | $S_4$ | $[8/3, 8/3]_{3}^{2}$ | |
| 2.6.10.4 | $x^{6} + 2 x^{5} + 2 x^{4} + 6$ | $6$ | $1$ | $10$ | $S_4$ | $[8/3, 8/3]_{3}^{2}$ | |
| 2.8.16.9 | $x^{8} + 2 x^{4} + 8 x + 12$ | $4$ | $2$ | $16$ | $S_4$ | $[8/3, 8/3]_{3}^{2}$ | |
| 3 | Data not computed | ||||||
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 5.5.9.4 | $x^{5} + 30$ | $5$ | $1$ | $9$ | $F_5$ | $[9/4]_{4}$ | |
| 5.5.9.4 | $x^{5} + 30$ | $5$ | $1$ | $9$ | $F_5$ | $[9/4]_{4}$ | |
| 5.10.19.3 | $x^{10} + 30$ | $10$ | $1$ | $19$ | $F_5$ | $[9/4]_{4}$ | |