Normalized defining polynomial
\( x^{22} - 7 x^{21} + x^{20} + 75 x^{19} - 315 x^{18} + 1521 x^{17} - 7332 x^{16} + 27996 x^{15} - 55200 x^{14} + 80260 x^{13} - 143239 x^{12} + 243448 x^{11} - 301974 x^{10} + 245025 x^{9} - 351450 x^{8} + 319011 x^{7} + 83028 x^{6} + 214731 x^{5} + 190575 x^{4} - 577170 x^{3} - 104544 x^{2} - 362637 x + 178596 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1848815246537641483557884967899322509765625=3^{20}\cdot 5^{20}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $83.41$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6}$, $\frac{1}{15} a^{11} - \frac{1}{15} a^{10} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{2}{15} a^{6} - \frac{1}{5} a^{5} + \frac{2}{5} a - \frac{2}{5}$, $\frac{1}{15} a^{12} - \frac{1}{15} a^{10} - \frac{1}{3} a^{9} - \frac{7}{15} a^{7} - \frac{1}{5} a^{5} + \frac{2}{5} a^{2} - \frac{2}{5}$, $\frac{1}{15} a^{13} - \frac{1}{15} a^{10} + \frac{1}{5} a^{8} - \frac{1}{3} a^{7} - \frac{1}{5} a^{5} + \frac{2}{5} a^{3} - \frac{2}{5}$, $\frac{1}{15} a^{14} - \frac{1}{15} a^{10} - \frac{2}{15} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{5} a^{5} + \frac{2}{5} a^{4} - \frac{2}{5}$, $\frac{1}{15} a^{15} + \frac{2}{15} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{7} + \frac{1}{5} a^{5} - \frac{2}{5}$, $\frac{1}{15} a^{16} + \frac{2}{15} a^{10} + \frac{1}{3} a^{9} + \frac{2}{15} a^{6} + \frac{2}{5} a^{5} - \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{165} a^{17} + \frac{4}{165} a^{16} + \frac{1}{165} a^{15} - \frac{2}{165} a^{14} + \frac{4}{165} a^{13} + \frac{1}{55} a^{12} + \frac{1}{33} a^{11} + \frac{4}{55} a^{10} + \frac{64}{165} a^{9} - \frac{73}{165} a^{8} + \frac{12}{55} a^{7} - \frac{37}{165} a^{6} - \frac{19}{55} a^{5} + \frac{1}{5} a^{4} - \frac{2}{5} a^{3} + \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{165} a^{18} - \frac{4}{165} a^{16} + \frac{1}{33} a^{15} + \frac{1}{165} a^{14} - \frac{2}{165} a^{13} + \frac{4}{165} a^{12} + \frac{1}{55} a^{11} - \frac{17}{165} a^{10} - \frac{32}{165} a^{9} - \frac{79}{165} a^{8} + \frac{17}{165} a^{7} - \frac{74}{165} a^{6} - \frac{12}{55} a^{5} + \frac{2}{5} a^{4} - \frac{2}{5} a^{2} + \frac{1}{5}$, $\frac{1}{495} a^{19} - \frac{1}{495} a^{18} + \frac{1}{495} a^{17} - \frac{4}{495} a^{16} + \frac{1}{495} a^{15} - \frac{13}{495} a^{14} + \frac{4}{495} a^{13} + \frac{14}{495} a^{12} + \frac{16}{495} a^{11} + \frac{1}{11} a^{10} - \frac{19}{165} a^{9} - \frac{4}{33} a^{8} + \frac{16}{55} a^{7} - \frac{1}{33} a^{6} - \frac{2}{55} a^{5} + \frac{1}{5} a^{4} - \frac{2}{5} a^{3} - \frac{1}{5} a^{2} + \frac{2}{5} a - \frac{2}{5}$, $\frac{1}{495} a^{20} + \frac{1}{55} a^{16} - \frac{1}{55} a^{15} - \frac{1}{33} a^{14} - \frac{1}{165} a^{13} + \frac{2}{165} a^{12} + \frac{2}{99} a^{11} - \frac{1}{55} a^{10} - \frac{2}{11} a^{9} + \frac{32}{165} a^{8} + \frac{46}{165} a^{7} - \frac{59}{165} a^{6} - \frac{21}{55} a^{5} - \frac{2}{5} a^{3} - \frac{1}{5} a^{2} + \frac{2}{5} a - \frac{1}{5}$, $\frac{1}{60847536635705772948652732559062612366487239774835279925} a^{21} - \frac{7832452171932139843811575148945037182857600188200702}{20282512211901924316217577519687537455495746591611759975} a^{20} + \frac{152690155217125505469347134963733119097721010026478}{4056502442380384863243515503937507491099149318322351995} a^{19} + \frac{9917707319668922759678528096979905048689767492799148}{4056502442380384863243515503937507491099149318322351995} a^{18} - \frac{3915976203371142662266481759564571519919287307414022}{1352167480793461621081171834645835830366383106107450665} a^{17} + \frac{10203603522194967861829448833511372230715379409928492}{20282512211901924316217577519687537455495746591611759975} a^{16} + \frac{483593194517924667646566776782861499529286380964242583}{20282512211901924316217577519687537455495746591611759975} a^{15} - \frac{131599159703045263074352019047184651054195220509595049}{4056502442380384863243515503937507491099149318322351995} a^{14} + \frac{5215795745609927079360058544504773871040717560498592}{1352167480793461621081171834645835830366383106107450665} a^{13} - \frac{63575663692714586567454547725442376185861415549638526}{2433901465428230917946109302362504494659489590993411197} a^{12} - \frac{589680575106638984354720628710434746248582563296388453}{20282512211901924316217577519687537455495746591611759975} a^{11} - \frac{830075750982347251719290198695353432025633688717924194}{6760837403967308105405859173229179151831915530537253325} a^{10} - \frac{75510888515831085326340190883503556447640927881691806}{368772949307307714840319591267046135554468119847486545} a^{9} - \frac{26382290698197149076316730037004898243025468101040302}{1352167480793461621081171834645835830366383106107450665} a^{8} + \frac{8005123487831469743983211475106582859584735108174046}{122924316435769238280106530422348711851489373282495515} a^{7} - \frac{660463006627486606932255994637611308974802888401887221}{6760837403967308105405859173229179151831915530537253325} a^{6} + \frac{2699475023516974088046076178232371690374376344954802866}{6760837403967308105405859173229179151831915530537253325} a^{5} + \frac{39727664805041712618565773134268780673325515310141809}{122924316435769238280106530422348711851489373282495515} a^{4} + \frac{42280250622280561395248739632367996437124777697861189}{122924316435769238280106530422348711851489373282495515} a^{3} - \frac{35401990862905760236655453678084236974076479840686969}{122924316435769238280106530422348711851489373282495515} a^{2} + \frac{73577334609306809176086795165605619397674680376233579}{614621582178846191400532652111743559257446866412477575} a + \frac{184969061574904257563845889073589469859380056350607666}{614621582178846191400532652111743559257446866412477575}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 69632015111600 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 56320 |
| The 40 conjugacy class representatives for t22n33 |
| Character table for t22n33 is not computed |
Intermediate fields
| 11.11.123610132462587890625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{2}$ | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.11.10.1 | $x^{11} - 3$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ |
| 3.11.10.1 | $x^{11} - 3$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ | |
| $5$ | 5.11.10.1 | $x^{11} - 5$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ |
| 5.11.10.1 | $x^{11} - 5$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ | |
| $11$ | 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| 11.10.9.7 | $x^{10} + 2673$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |