Normalized defining polynomial
\(x^{22} - 7 x^{21} + 16 x^{20} - 3 x^{19} - 51 x^{18} + 101 x^{17} - 62 x^{16} - 50 x^{15} + 49 x^{14} + 124 x^{13} - 271 x^{12} + 166 x^{11} + 113 x^{10} - 102 x^{9} - 51 x^{8} - 34 x^{7} + 128 x^{6} - 78 x^{5} - 37 x^{4} + 36 x^{3} + 14 x^{2} - 8 x + 1\)
Invariants
Degree: | $22$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[6, 8]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(18415764278243178646713405625\)\(\medspace = 5^{4}\cdot 7^{4}\cdot 83^{4}\cdot 127^{4}\cdot 997^{2}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $19.27$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $5, 7, 83, 127, 997$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $2$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{1108761577063266131372141} a^{21} - \frac{283384618706645595022485}{1108761577063266131372141} a^{20} - \frac{203180720495786868013377}{1108761577063266131372141} a^{19} - \frac{94073909061790253467819}{1108761577063266131372141} a^{18} + \frac{472759625196340611426276}{1108761577063266131372141} a^{17} - \frac{122093637841682309884633}{1108761577063266131372141} a^{16} - \frac{54340648518736035586808}{1108761577063266131372141} a^{15} - \frac{365673227542756194901448}{1108761577063266131372141} a^{14} - \frac{122576176290540341135576}{1108761577063266131372141} a^{13} + \frac{38146336890087654345935}{1108761577063266131372141} a^{12} - \frac{507555215411147034816354}{1108761577063266131372141} a^{11} + \frac{192644958416136515852031}{1108761577063266131372141} a^{10} - \frac{27556565192618162745012}{1108761577063266131372141} a^{9} + \frac{420203174288129861841007}{1108761577063266131372141} a^{8} + \frac{118914103635530950695818}{1108761577063266131372141} a^{7} - \frac{551500661915843944029855}{1108761577063266131372141} a^{6} + \frac{347898169913377589771184}{1108761577063266131372141} a^{5} - \frac{222882661644373160498881}{1108761577063266131372141} a^{4} + \frac{101099152262605402900486}{1108761577063266131372141} a^{3} - \frac{329290991760260986925489}{1108761577063266131372141} a^{2} + \frac{389654044863953386804836}{1108761577063266131372141} a + \frac{234234500195623482152505}{1108761577063266131372141}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $13$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) ![]() | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 416442.121837 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A non-solvable group of order 20437401600 |
The 200 conjugacy class representatives for t22n49 are not computed |
Character table for t22n49 is not computed |
Intermediate fields
11.3.136113034225.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ | R | R | ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/13.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | $16{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
$5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
5.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
5.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
$7$ | 7.7.0.1 | $x^{7} - x + 2$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
7.7.0.1 | $x^{7} - x + 2$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ | |
7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
83 | Data not computed | ||||||
$127$ | 127.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
127.6.4.1 | $x^{6} + 1016 x^{3} + 435483$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
127.7.0.1 | $x^{7} - x + 17$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ | |
127.7.0.1 | $x^{7} - x + 17$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ | |
997 | Data not computed |