Normalized defining polynomial
\( x^{22} + 55 x^{20} + 165 x^{18} - 25025 x^{16} - 276485 x^{14} + 2066735 x^{12} + 43231375 x^{10} + 184328485 x^{8} + 61775780 x^{6} - 734883710 x^{4} - 983938615 x^{2} - 240015655 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1833841138186726138360895488000000000000000000000=2^{32}\cdot 5^{21}\cdot 11^{23}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $156.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{17} - \frac{1}{4} a^{16} - \frac{1}{4} a^{15} - \frac{1}{4} a^{14} - \frac{1}{4} a^{12} - \frac{1}{2} a^{11} + \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{4} a^{18} - \frac{1}{4} a^{14} - \frac{1}{4} a^{13} - \frac{1}{4} a^{12} - \frac{1}{2} a^{11} + \frac{1}{4} a^{10} + \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{4} a^{19} - \frac{1}{4} a^{15} - \frac{1}{4} a^{14} - \frac{1}{4} a^{13} + \frac{1}{4} a^{11} + \frac{1}{4} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{35674387795944824220975178285314855397790735692} a^{20} + \frac{1806411990268719892389228075939308049062494577}{17837193897972412110487589142657427698895367846} a^{18} + \frac{5642164592633652064440023662545566777632349081}{35674387795944824220975178285314855397790735692} a^{16} - \frac{1}{4} a^{15} + \frac{4758793218534199345822046511514589468361423495}{35674387795944824220975178285314855397790735692} a^{14} + \frac{5157462119945027672905956151102578679890773961}{35674387795944824220975178285314855397790735692} a^{12} + \frac{1067343498007618956498112374345931241912091035}{35674387795944824220975178285314855397790735692} a^{10} - \frac{1}{2} a^{9} + \frac{3513722237097591493036803328749221104223244609}{17837193897972412110487589142657427698895367846} a^{8} + \frac{1}{4} a^{7} - \frac{6831652423512001188244377606616360993261809597}{17837193897972412110487589142657427698895367846} a^{6} + \frac{1}{4} a^{5} - \frac{3950519119355641746066869594787105008128268900}{8918596948986206055243794571328713849447683923} a^{4} + \frac{1}{4} a^{3} + \frac{17047000108368779537330110834008357996297129303}{35674387795944824220975178285314855397790735692} a^{2} - \frac{1}{2} a - \frac{3394263265088685781217657779257941316339657359}{8918596948986206055243794571328713849447683923}$, $\frac{1}{74523796105728737797617147438022732925984846860588} a^{21} + \frac{3294575098156447474169738652972174026544320356741}{74523796105728737797617147438022732925984846860588} a^{19} - \frac{9198349886761130996947155973948687125852377459455}{74523796105728737797617147438022732925984846860588} a^{17} - \frac{1}{4} a^{16} + \frac{3128347627228932322035861020506471498965593926759}{37261898052864368898808573719011366462992423430294} a^{15} - \frac{1}{4} a^{14} + \frac{2852070456261065348486845343615075364238480400379}{37261898052864368898808573719011366462992423430294} a^{13} + \frac{3750803688797703455708264673430897139313707135139}{37261898052864368898808573719011366462992423430294} a^{11} - \frac{1}{2} a^{10} + \frac{30731593933731675043300945904884917653555717603953}{74523796105728737797617147438022732925984846860588} a^{9} - \frac{1}{4} a^{8} - \frac{18022397489375648232780709411690618336877583334057}{37261898052864368898808573719011366462992423430294} a^{7} - \frac{1}{2} a^{6} - \frac{7326118614237030813101222212655661175404676769683}{18630949026432184449404286859505683231496211715147} a^{5} - \frac{1}{2} a^{4} + \frac{18603403041795622198665397997483048020245270424835}{74523796105728737797617147438022732925984846860588} a^{3} - \frac{1}{4} a^{2} + \frac{19455720086576533075472332918093550568078935374473}{74523796105728737797617147438022732925984846860588} a - \frac{1}{2}$
Class group and class number
$C_{2}\times C_{2}\times C_{4}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1405051562420000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 225280 |
| The 88 conjugacy class representatives for t22n37 are not computed |
| Character table for t22n37 is not computed |
Intermediate fields
| 11.11.2853116706110000000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | R | $20{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | $20{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | $20{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 11 | Data not computed | ||||||