Normalized defining polynomial
\( x^{22} + 40 x^{20} + 510 x^{18} + 878 x^{16} - 29393 x^{14} - 208069 x^{12} - 262302 x^{10} + 1411560 x^{8} + 3529300 x^{6} - 1343500 x^{4} - 7430625 x^{2} - 3003125 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(176567060587972326493874136416898252800000=2^{22}\cdot 5^{5}\cdot 1297^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $74.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 1297$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} + \frac{1}{5} a^{10} + \frac{1}{5} a^{8} - \frac{1}{5} a^{6} + \frac{1}{5} a^{4} + \frac{2}{5} a^{2}$, $\frac{1}{5} a^{13} + \frac{1}{5} a^{11} + \frac{1}{5} a^{9} - \frac{1}{5} a^{7} + \frac{1}{5} a^{5} + \frac{2}{5} a^{3}$, $\frac{1}{25} a^{14} + \frac{1}{25} a^{12} - \frac{9}{25} a^{10} - \frac{1}{25} a^{8} - \frac{9}{25} a^{6} + \frac{12}{25} a^{4}$, $\frac{1}{25} a^{15} + \frac{1}{25} a^{13} - \frac{9}{25} a^{11} - \frac{1}{25} a^{9} - \frac{9}{25} a^{7} + \frac{12}{25} a^{5}$, $\frac{1}{125} a^{16} + \frac{1}{125} a^{14} - \frac{9}{125} a^{12} - \frac{51}{125} a^{10} - \frac{9}{125} a^{8} - \frac{38}{125} a^{6} + \frac{2}{5} a^{4} + \frac{2}{5} a^{2}$, $\frac{1}{125} a^{17} + \frac{1}{125} a^{15} - \frac{9}{125} a^{13} - \frac{51}{125} a^{11} - \frac{9}{125} a^{9} - \frac{38}{125} a^{7} + \frac{2}{5} a^{5} + \frac{2}{5} a^{3}$, $\frac{1}{6875} a^{18} - \frac{2}{1375} a^{16} + \frac{8}{1375} a^{14} + \frac{658}{6875} a^{12} - \frac{938}{6875} a^{10} + \frac{2801}{6875} a^{8} - \frac{2122}{6875} a^{6} - \frac{271}{1375} a^{4} + \frac{82}{275} a^{2} + \frac{27}{55}$, $\frac{1}{6875} a^{19} - \frac{2}{1375} a^{17} + \frac{8}{1375} a^{15} + \frac{658}{6875} a^{13} - \frac{938}{6875} a^{11} + \frac{2801}{6875} a^{9} - \frac{2122}{6875} a^{7} - \frac{271}{1375} a^{5} + \frac{82}{275} a^{3} + \frac{27}{55} a$, $\frac{1}{38653612832943149021715625} a^{20} + \frac{232422452514878731994}{7730722566588629804343125} a^{18} - \frac{14137041229459518488418}{7730722566588629804343125} a^{16} - \frac{16733357949653691342981}{1044692238728193216803125} a^{14} + \frac{2872716510917150332236172}{38653612832943149021715625} a^{12} + \frac{8655180435941976791035441}{38653612832943149021715625} a^{10} + \frac{5668891589283828269382778}{38653612832943149021715625} a^{8} - \frac{562552932379149511705683}{1546144513317725960868625} a^{6} - \frac{17647877616200305622543}{309228902663545192173725} a^{4} - \frac{1375417794373950415447}{8357537909825545734425} a^{2} + \frac{1015522113795080387094}{5622343684791730766795}$, $\frac{1}{1198261997821237619673184375} a^{21} + \frac{6979234874264955652148}{239652399564247523934636875} a^{19} - \frac{19759384914251249255213}{239652399564247523934636875} a^{17} - \frac{556934217393832147449906}{32385459400573989720896875} a^{15} + \frac{23832813767820722630847932}{1198261997821237619673184375} a^{13} + \frac{372516396684608416825707456}{1198261997821237619673184375} a^{11} - \frac{89708546679523092458527602}{1198261997821237619673184375} a^{9} - \frac{54731735184736506151420163}{239652399564247523934636875} a^{7} - \frac{9214427657234938908774359}{47930479912849504786927375} a^{5} + \frac{10233962138547353113827}{259083675204591917767175} a^{3} + \frac{69643117573579884232702}{1917219196513980191477095} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1476355728510 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 45056 |
| The 200 conjugacy class representatives for t22n32 are not computed |
| Character table for t22n32 is not computed |
Intermediate fields
| 11.11.3670285774226257.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $22$ | R | $22$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/19.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | $22$ | $22$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 1297 | Data not computed | ||||||