Normalized defining polynomial
\( x^{22} - 2 x^{21} - 31 x^{20} + 220 x^{19} - 355 x^{18} - 2402 x^{17} + 18749 x^{16} - 57548 x^{15} + 33215 x^{14} + 506450 x^{13} - 2619213 x^{12} + 7205376 x^{11} - 11977167 x^{10} + 7869510 x^{9} + 14684865 x^{8} - 47083716 x^{7} + 42183012 x^{6} + 14211456 x^{5} - 36308880 x^{4} + 10498140 x^{3} + 7450218 x^{2} - 6904116 x - 307638 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(165299408640000000000000000000000000000000000000=2^{44}\cdot 3^{17}\cdot 5^{37}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $140.05$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{8}$, $\frac{1}{6} a^{17} + \frac{1}{6} a^{16} - \frac{1}{6} a^{15} + \frac{1}{6} a^{14} - \frac{1}{6} a^{13} + \frac{1}{6} a^{12} - \frac{1}{6} a^{11} + \frac{1}{6} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8}$, $\frac{1}{18} a^{18} + \frac{1}{18} a^{17} - \frac{1}{18} a^{16} + \frac{1}{18} a^{15} - \frac{1}{18} a^{14} + \frac{7}{18} a^{13} + \frac{5}{18} a^{12} - \frac{5}{18} a^{11} + \frac{4}{9} a^{10} + \frac{4}{9} a^{9} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{4} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{108} a^{19} + \frac{1}{108} a^{18} - \frac{1}{108} a^{17} + \frac{1}{108} a^{16} + \frac{13}{54} a^{15} - \frac{1}{54} a^{14} + \frac{8}{27} a^{13} + \frac{1}{27} a^{12} + \frac{17}{108} a^{11} - \frac{19}{108} a^{10} - \frac{1}{4} a^{9} - \frac{11}{36} a^{8} + \frac{7}{18} a^{7} - \frac{1}{2} a^{6} - \frac{5}{18} a^{5} - \frac{1}{6} a^{4} - \frac{1}{18} a^{3} + \frac{7}{18} a^{2} - \frac{1}{6} a - \frac{1}{2}$, $\frac{1}{324} a^{20} + \frac{1}{324} a^{19} - \frac{1}{324} a^{18} + \frac{1}{324} a^{17} + \frac{13}{162} a^{16} + \frac{13}{81} a^{15} - \frac{19}{81} a^{14} - \frac{79}{162} a^{13} - \frac{91}{324} a^{12} + \frac{35}{324} a^{11} + \frac{1}{4} a^{10} - \frac{29}{108} a^{9} + \frac{7}{54} a^{8} - \frac{1}{2} a^{7} - \frac{5}{54} a^{6} - \frac{7}{18} a^{5} + \frac{17}{54} a^{4} + \frac{25}{54} a^{3} - \frac{1}{18} a^{2} - \frac{1}{2} a$, $\frac{1}{7591615356173371113423723520680107954367081195604020874498399463853891180703632} a^{21} - \frac{7909987791294357650449171797419551643904902299972096132074477636660932102171}{7591615356173371113423723520680107954367081195604020874498399463853891180703632} a^{20} - \frac{104757220458774188496421697603644120095548406297211673924946824737836887767}{1897903839043342778355930880170026988591770298901005218624599865963472795175908} a^{19} + \frac{19469820006505177225386487472484163728392313101478052128419708886743011747799}{948951919521671389177965440085013494295885149450502609312299932981736397587954} a^{18} - \frac{289386379414430325450129820012781340011363782039666956498361404459272050669291}{7591615356173371113423723520680107954367081195604020874498399463853891180703632} a^{17} + \frac{1850791892952935663975924187118768106848403924124882016321421581287440433039985}{7591615356173371113423723520680107954367081195604020874498399463853891180703632} a^{16} + \frac{394735888558834429500522750072058629644123980765101060580934270856413953173161}{1897903839043342778355930880170026988591770298901005218624599865963472795175908} a^{15} - \frac{177198499987703587279705574466111549552236221637912191949118709837432859230705}{948951919521671389177965440085013494295885149450502609312299932981736397587954} a^{14} - \frac{2444274864068822752744101975096022385651805829171586951815296843901617666765217}{7591615356173371113423723520680107954367081195604020874498399463853891180703632} a^{13} - \frac{1152668119932985154602214318007917508809989706608404212645758869065745392178733}{7591615356173371113423723520680107954367081195604020874498399463853891180703632} a^{12} + \frac{16117974304925868062384671774842209374985144147009861518862191211650065113612}{52719551084537299398775857782500749683104730525027922739572218498985355421553} a^{11} + \frac{155568645850788191822818879935881565286387733580286805624366010367008605291327}{316317306507223796392655146695004498098628383150167536437433310993912132529318} a^{10} - \frac{583889577005807018511363715416513831516127287418405771362815085184983444702421}{2530538452057790371141241173560035984789027065201340291499466487951297060234544} a^{9} - \frac{83383281134457352234856766483923399378078771741080385186829746098286734218529}{281170939117532263460137908173337331643225229466815587944385165327921895581616} a^{8} - \frac{64570580675322222635032703519188618522628996739913259852768572093668220327291}{632634613014447592785310293390008996197256766300335072874866621987824265058636} a^{7} + \frac{4636982517955923390555738837223930297308430603428892762501443822996994779952}{52719551084537299398775857782500749683104730525027922739572218498985355421553} a^{6} + \frac{41711674034786710323239774849144288824115846773087093486342918410605103806515}{632634613014447592785310293390008996197256766300335072874866621987824265058636} a^{5} + \frac{129534790484238510293259144855418472054280902301316398470507572481597830229609}{632634613014447592785310293390008996197256766300335072874866621987824265058636} a^{4} + \frac{46716659311909034224670516399036585829709145262621776613142769635700712731545}{210878204338149197595103431130002998732418922100111690958288873995941421686212} a^{3} - \frac{3721513977307155228420665448590367774220298249902237192542895662628825360127}{11715455796563844310839079507222388818467717894450649497682715221996745649234} a^{2} + \frac{8207215322973973583814572916468534446542044553707734043518641386956311602593}{46861823186255377243356318028889555273870871577802597990730860887986982596936} a - \frac{7436399575577172274226666194941605986352547110749999157809403664221469875153}{15620607728751792414452106009629851757956957192600865996910286962662327532312}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 56428741249600000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 15840 |
| The 20 conjugacy class representatives for t22n26 |
| Character table for t22n26 |
Intermediate fields
| 11.3.6561000000000000000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 22 sibling: | data not computed |
| Degree 24 sibling: | data not computed |
| Degree 44 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | $22$ | $22$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.8.18.66 | $x^{8} + 6 x^{4} + 4 x^{3} + 2$ | $8$ | $1$ | $18$ | $S_4\times C_2$ | $[2, 8/3, 8/3]_{3}^{2}$ | |
| 2.12.24.451 | $x^{12} + 4 x^{11} + 4 x^{9} - 2 x^{8} + 2 x^{6} + 2 x^{4} + 4 x^{2} + 4 x - 2$ | $12$ | $1$ | $24$ | $C_2 \times S_4$ | $[2, 8/3, 8/3]_{3}^{2}$ | |
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 3.4.3.2 | $x^{4} - 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 3.8.7.1 | $x^{8} + 3$ | $8$ | $1$ | $7$ | $QD_{16}$ | $[\ ]_{8}^{2}$ | |
| 3.8.7.1 | $x^{8} + 3$ | $8$ | $1$ | $7$ | $QD_{16}$ | $[\ ]_{8}^{2}$ | |
| $5$ | 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 5.10.18.2 | $x^{10} + 10 x^{8} + 40 x^{6} + 60 x^{5} + 80 x^{4} - 75 x^{3} + 80 x^{2} + 75 x + 57$ | $5$ | $2$ | $18$ | $F_{5}\times C_2$ | $[9/4]_{4}^{2}$ | |
| 5.10.19.16 | $x^{10} + 85$ | $10$ | $1$ | $19$ | $F_{5}\times C_2$ | $[9/4]_{4}^{2}$ |