Normalized defining polynomial
\( x^{22} - 2 x^{21} - x^{20} + 18 x^{19} - 17 x^{18} - 44 x^{17} + 110 x^{16} - 3 x^{15} - 254 x^{14} + 59 x^{13} + 240 x^{12} - 102 x^{11} - 552 x^{10} - 230 x^{9} + 307 x^{8} + 320 x^{7} - 3 x^{6} - 154 x^{5} - 62 x^{4} + 18 x^{3} + 19 x^{2} + 2 x - 1 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1447402975463751668017578125=5^{11}\cdot 7^{4}\cdot 83^{4}\cdot 127^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $17.16$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7, 83, 127$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{5} a^{18} + \frac{2}{5} a^{17} - \frac{1}{5} a^{14} + \frac{2}{5} a^{12} - \frac{1}{5} a^{11} - \frac{1}{5} a^{10} - \frac{1}{5} a^{9} - \frac{2}{5} a^{6} - \frac{2}{5} a^{5} - \frac{2}{5} a^{4} - \frac{1}{5} a^{3} + \frac{2}{5} a^{2} + \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{5} a^{19} + \frac{1}{5} a^{17} - \frac{1}{5} a^{15} + \frac{2}{5} a^{14} + \frac{2}{5} a^{13} + \frac{1}{5} a^{11} + \frac{1}{5} a^{10} + \frac{2}{5} a^{9} - \frac{2}{5} a^{7} + \frac{2}{5} a^{6} + \frac{2}{5} a^{5} - \frac{2}{5} a^{4} - \frac{1}{5} a^{3} + \frac{2}{5} a^{2} + \frac{2}{5} a + \frac{2}{5}$, $\frac{1}{5} a^{20} - \frac{2}{5} a^{17} - \frac{1}{5} a^{16} + \frac{2}{5} a^{15} - \frac{2}{5} a^{14} - \frac{1}{5} a^{12} + \frac{2}{5} a^{11} - \frac{2}{5} a^{10} + \frac{1}{5} a^{9} - \frac{2}{5} a^{8} + \frac{2}{5} a^{7} - \frac{1}{5} a^{6} + \frac{1}{5} a^{4} - \frac{2}{5} a^{3} + \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{56519985376604065507145} a^{21} - \frac{1332303350785640714766}{56519985376604065507145} a^{20} - \frac{3535365261660196536029}{56519985376604065507145} a^{19} - \frac{4919424422287081949599}{56519985376604065507145} a^{18} - \frac{18552319389979348044422}{56519985376604065507145} a^{17} - \frac{5480146535618417328722}{56519985376604065507145} a^{16} + \frac{2979282937667072444890}{11303997075320813101429} a^{15} - \frac{3979740765573833739454}{56519985376604065507145} a^{14} + \frac{2618457838077731340976}{56519985376604065507145} a^{13} + \frac{12954503807196842959579}{56519985376604065507145} a^{12} + \frac{18695186257425511168174}{56519985376604065507145} a^{11} + \frac{24886967222611872102271}{56519985376604065507145} a^{10} + \frac{23198866140311044023326}{56519985376604065507145} a^{9} - \frac{21710420089587276733561}{56519985376604065507145} a^{8} + \frac{4307330292767668606748}{11303997075320813101429} a^{7} - \frac{2365804169949362957548}{56519985376604065507145} a^{6} - \frac{20038793996407534264328}{56519985376604065507145} a^{5} - \frac{13162204338885356986351}{56519985376604065507145} a^{4} - \frac{8629938208056997339052}{56519985376604065507145} a^{3} + \frac{27563790421963051834119}{56519985376604065507145} a^{2} + \frac{582428447918856776305}{11303997075320813101429} a + \frac{10260943314429562231528}{56519985376604065507145}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 95631.3345105 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 39916800 |
| The 62 conjugacy class representatives for t22n46 are not computed |
| Character table for t22n46 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 11.3.136113034225.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $22$ | $22$ | R | R | ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/29.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| 7 | Data not computed | ||||||
| $83$ | 83.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 83.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 83.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 83.6.4.1 | $x^{6} + 415 x^{3} + 55112$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 83.10.0.1 | $x^{10} - x + 13$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| $127$ | 127.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 127.6.4.1 | $x^{6} + 1016 x^{3} + 435483$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 127.14.0.1 | $x^{14} - x + 29$ | $1$ | $14$ | $0$ | $C_{14}$ | $[\ ]^{14}$ | |