Normalized defining polynomial
\( x^{22} + 84 x^{20} - 2341 x^{18} - 343692 x^{16} - 3803688 x^{14} + 333658776 x^{12} + 9072108672 x^{10} + 5363172192 x^{8} - 2056157959803 x^{6} - 22774387512564 x^{4} - 77942112687873 x^{2} - 36916858667964 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(136512613038986913742008486695416726751511776495295634952214697836102284383214104319797066438605390496137216=2^{68}\cdot 3^{21}\cdot 11\cdot 31\cdot 37\cdot 337^{8}\cdot 310501^{8}\cdot 243830141\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $74{,}093.58$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11, 31, 37, 337, 310501, 243830141$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{2} a^{17} - \frac{1}{2} a$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{19} - \frac{1}{4} a^{17} - \frac{1}{2} a^{16} + \frac{1}{4} a^{3} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{57887320607168480035725746532474501690526662399435613406516} a^{20} - \frac{2950442336895763005424408194123522436283571976756718491205}{57887320607168480035725746532474501690526662399435613406516} a^{18} - \frac{5260628338705088304708544940283463866244417696779481222833}{14471830151792120008931436633118625422631665599858903351629} a^{16} + \frac{1862815518614171432916916372115606405079794023195673116011}{14471830151792120008931436633118625422631665599858903351629} a^{14} - \frac{5971436442736102431805173807664951683990214041730634988600}{14471830151792120008931436633118625422631665599858903351629} a^{12} + \frac{4783913695076330561191782344476371722020399003380016029135}{14471830151792120008931436633118625422631665599858903351629} a^{10} + \frac{4129638676193580634336740984893486671296325384433486391522}{14471830151792120008931436633118625422631665599858903351629} a^{8} - \frac{1388090939202489857342431684589240974415729898068205871800}{14471830151792120008931436633118625422631665599858903351629} a^{6} + \frac{5365070608331306529419303327457602653555706182462125407541}{57887320607168480035725746532474501690526662399435613406516} a^{4} - \frac{27439428531960532971019149142947910324725200397562224966789}{57887320607168480035725746532474501690526662399435613406516} a^{2} - \frac{376412577946053724145161733249890854754310389639865058102}{1315620922890192728084676057556238674784696872714445759239}$, $\frac{1}{57887320607168480035725746532474501690526662399435613406516} a^{21} - \frac{2950442336895763005424408194123522436283571976756718491205}{57887320607168480035725746532474501690526662399435613406516} a^{19} + \frac{3950573474381943399514346752551697690142830206299940905963}{28943660303584240017862873266237250845263331199717806703258} a^{17} + \frac{1862815518614171432916916372115606405079794023195673116011}{14471830151792120008931436633118625422631665599858903351629} a^{15} - \frac{5971436442736102431805173807664951683990214041730634988600}{14471830151792120008931436633118625422631665599858903351629} a^{13} + \frac{4783913695076330561191782344476371722020399003380016029135}{14471830151792120008931436633118625422631665599858903351629} a^{11} + \frac{4129638676193580634336740984893486671296325384433486391522}{14471830151792120008931436633118625422631665599858903351629} a^{9} - \frac{1388090939202489857342431684589240974415729898068205871800}{14471830151792120008931436633118625422631665599858903351629} a^{7} + \frac{5365070608331306529419303327457602653555706182462125407541}{57887320607168480035725746532474501690526662399435613406516} a^{5} - \frac{27439428531960532971019149142947910324725200397562224966789}{57887320607168480035725746532474501690526662399435613406516} a^{3} + \frac{562795766998085279794352591056456965276076093434715643035}{2631241845780385456169352115112477349569393745428891518478} a$
Class group and class number
Not computed
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 16220160 |
| The 104 conjugacy class representatives for t22n44 are not computed |
| Character table for t22n44 is not computed |
Intermediate fields
| 11.11.118769262421915560193703211428553337469927424.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $16{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ | R | $22$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | $16{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | $16{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | R | R | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | $16{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $11$ | $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 11.8.0.1 | $x^{8} + x^{2} - 2 x + 6$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| $31$ | $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 31.8.0.1 | $x^{8} - x + 22$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 31.8.0.1 | $x^{8} - x + 22$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| $37$ | 37.2.1.2 | $x^{2} + 74$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 37.5.0.1 | $x^{5} - x + 13$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 37.5.0.1 | $x^{5} - x + 13$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 37.5.0.1 | $x^{5} - x + 13$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 37.5.0.1 | $x^{5} - x + 13$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 337 | Data not computed | ||||||
| 310501 | Data not computed | ||||||
| 243830141 | Data not computed | ||||||