\\ Pari/GP code for working with number field 22.4.969538443288973935184255159.1 \\ (Note that not all these functions may be available, and some may take a long time to execute.) \\ Define the number field: K = bnfinit(x^22 - x^21 + 3*x^20 + 3*x^18 + 5*x^17 + 7*x^16 + 4*x^15 + 12*x^14 - 17*x^13 - 35*x^11 - 28*x^10 - 29*x^9 - 20*x^8 - 6*x^7 - 11*x^6 - 26*x^5 - 22*x^4 - 11*x^3 - 4*x^2 + 9*x - 1, 1) \\ Defining polynomial: K.pol \\ Degree over Q: poldegree(K.pol) \\ Signature: K.sign \\ Discriminant: K.disc \\ Ramified primes: factor(abs(K.disc))[,1]~ \\ Integral basis: K.zk \\ Class group: K.clgp \\ Unit rank: K.fu \\ Generator for roots of unity: K.tu[2] \\ Fundamental units: K.fu \\ Regulator: K.reg \\ Galois group: polgalois(K.pol) \\ Frobenius cycle types: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$: idealfactors = idealprimedec(K, p); \\ get the data vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])