Normalized defining polynomial
\( x^{22} - x^{21} + 3 x^{20} + 3 x^{18} + 5 x^{17} + 7 x^{16} + 4 x^{15} + 12 x^{14} - 17 x^{13} - 35 x^{11} - 28 x^{10} - 29 x^{9} - 20 x^{8} - 6 x^{7} - 11 x^{6} - 26 x^{5} - 22 x^{4} - 11 x^{3} - 4 x^{2} + 9 x - 1 \)
Invariants
Degree: | $22$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[4, 9]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(-969538443288973935184255159\)\(\medspace = -\,173\cdot 7043\cdot 28208540809^{2}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $16.85$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $173, 7043, 28208540809$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $2$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{828204689715717011} a^{21} - \frac{289070269254590605}{828204689715717011} a^{20} - \frac{166019745221986257}{828204689715717011} a^{19} - \frac{152170991881510079}{828204689715717011} a^{18} + \frac{30735041949926004}{828204689715717011} a^{17} + \frac{245770178671964005}{828204689715717011} a^{16} + \frac{251046993100387380}{828204689715717011} a^{15} - \frac{103020705440085255}{828204689715717011} a^{14} + \frac{166380821876545465}{828204689715717011} a^{13} - \frac{406908123388535667}{828204689715717011} a^{12} + \frac{83316211157219379}{828204689715717011} a^{11} - \frac{330497846319408425}{828204689715717011} a^{10} + \frac{276855857755791978}{828204689715717011} a^{9} - \frac{325570347416634728}{828204689715717011} a^{8} - \frac{398236988782989238}{828204689715717011} a^{7} + \frac{245014594335145052}{828204689715717011} a^{6} - \frac{93724578219585522}{828204689715717011} a^{5} - \frac{9160698337253660}{828204689715717011} a^{4} - \frac{187775435186994389}{828204689715717011} a^{3} - \frac{111863643463248221}{828204689715717011} a^{2} + \frac{122114417229796539}{828204689715717011} a + \frac{195002868157984756}{828204689715717011}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $12$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 42357.726741 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A non-solvable group of order 81749606400 |
The 752 conjugacy class representatives for t22n53 are not computed |
Character table for t22n53 is not computed |
Intermediate fields
11.3.28208540809.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/5.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }$ | $16{,}\,{\href{/LocalNumberField/13.6.0.1}{6} }$ | ${\href{/LocalNumberField/17.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/23.14.0.1}{14} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | $16{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
$173$ | 173.2.1.2 | $x^{2} + 346$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
173.10.0.1 | $x^{10} - x + 53$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
173.10.0.1 | $x^{10} - x + 53$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
7043 | Data not computed | ||||||
28208540809 | Data not computed |