Normalized defining polynomial
\(x^{22} - 4 x^{21} + 5 x^{20} + 4 x^{19} - 26 x^{18} + 31 x^{17} + 15 x^{16} - 79 x^{15} + 76 x^{14} + 60 x^{13} - 153 x^{12} + 84 x^{11} + 83 x^{10} - 192 x^{9} + 24 x^{8} + 58 x^{7} - 150 x^{6} + 30 x^{5} + 19 x^{4} - 23 x^{3} + 6 x^{2} + 29 x + 1\)
Invariants
Degree: | $22$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[4, 9]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(-931263224878297608080470016\)\(\medspace = -\,2^{12}\cdot 11^{7}\cdot 19^{4}\cdot 547^{4}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $16.82$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $2, 11, 19, 547$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $2$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{11} a^{17} + \frac{3}{11} a^{15} + \frac{3}{11} a^{13} - \frac{4}{11} a^{12} - \frac{1}{11} a^{11} + \frac{1}{11} a^{10} - \frac{2}{11} a^{9} - \frac{5}{11} a^{8} - \frac{4}{11} a^{7} + \frac{1}{11} a^{6} - \frac{4}{11} a^{5} - \frac{4}{11} a^{4} - \frac{2}{11} a^{3} - \frac{1}{11} a^{2} - \frac{5}{11} a - \frac{1}{11}$, $\frac{1}{11} a^{18} + \frac{3}{11} a^{16} + \frac{3}{11} a^{14} - \frac{4}{11} a^{13} - \frac{1}{11} a^{12} + \frac{1}{11} a^{11} - \frac{2}{11} a^{10} - \frac{5}{11} a^{9} - \frac{4}{11} a^{8} + \frac{1}{11} a^{7} - \frac{4}{11} a^{6} - \frac{4}{11} a^{5} - \frac{2}{11} a^{4} - \frac{1}{11} a^{3} - \frac{5}{11} a^{2} - \frac{1}{11} a$, $\frac{1}{242} a^{19} + \frac{5}{242} a^{18} - \frac{5}{121} a^{17} - \frac{117}{242} a^{16} - \frac{51}{121} a^{15} + \frac{5}{22} a^{14} + \frac{83}{242} a^{13} - \frac{31}{121} a^{12} - \frac{105}{242} a^{11} - \frac{3}{121} a^{10} + \frac{63}{242} a^{9} + \frac{56}{121} a^{8} + \frac{53}{242} a^{7} + \frac{53}{121} a^{6} + \frac{48}{121} a^{5} + \frac{107}{242} a^{4} + \frac{93}{242} a^{3} - \frac{57}{242} a^{2} - \frac{39}{242} a - \frac{9}{242}$, $\frac{1}{242} a^{20} + \frac{9}{242} a^{18} - \frac{1}{242} a^{17} - \frac{111}{242} a^{16} + \frac{37}{242} a^{15} - \frac{30}{121} a^{14} + \frac{29}{242} a^{13} - \frac{103}{242} a^{12} + \frac{13}{242} a^{11} + \frac{71}{242} a^{10} - \frac{71}{242} a^{9} - \frac{45}{242} a^{8} + \frac{105}{242} a^{7} - \frac{30}{121} a^{6} - \frac{87}{242} a^{5} - \frac{34}{121} a^{4} + \frac{14}{121} a^{3} - \frac{20}{121} a^{2} + \frac{27}{121} a - \frac{21}{242}$, $\frac{1}{406526742211766} a^{21} - \frac{288595015055}{203263371105883} a^{20} + \frac{255666951553}{406526742211766} a^{19} - \frac{10643548821841}{406526742211766} a^{18} - \frac{10810179676633}{406526742211766} a^{17} + \frac{92462124524021}{406526742211766} a^{16} - \frac{5406253665840}{203263371105883} a^{15} - \frac{139971702813821}{406526742211766} a^{14} - \frac{14585103833331}{406526742211766} a^{13} + \frac{13764050961235}{36956976564706} a^{12} + \frac{163921142487191}{406526742211766} a^{11} - \frac{193045451521693}{406526742211766} a^{10} + \frac{27509531970517}{406526742211766} a^{9} - \frac{57330290235511}{406526742211766} a^{8} - \frac{31001972030638}{203263371105883} a^{7} + \frac{98468543453281}{406526742211766} a^{6} - \frac{36295292169886}{203263371105883} a^{5} + \frac{52852929139063}{203263371105883} a^{4} + \frac{75738032908635}{203263371105883} a^{3} - \frac{52209940478345}{203263371105883} a^{2} - \frac{295786960287}{36956976564706} a - \frac{92399281118454}{203263371105883}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $12$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) ![]() | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 56735.8548792 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A non-solvable group of order 40874803200 |
The 400 conjugacy class representatives for t22n52 are not computed |
Character table for t22n52 is not computed |
Intermediate fields
11.3.836463893056.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 44 sibling: | data not computed |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }$ | $22$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
$2$ | 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
2.9.6.1 | $x^{9} - 4 x^{3} + 8$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
2.9.6.1 | $x^{9} - 4 x^{3} + 8$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
$11$ | 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
11.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
11.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
11.6.4.1 | $x^{6} + 220 x^{3} + 41503$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
11.6.3.1 | $x^{6} - 22 x^{4} + 121 x^{2} - 11979$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
$19$ | 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
19.14.0.1 | $x^{14} + x^{2} - x + 15$ | $1$ | $14$ | $0$ | $C_{14}$ | $[\ ]^{14}$ | |
547 | Data not computed |