Normalized defining polynomial
\( x^{22} - 11 x^{21} + 5 x^{20} + 335 x^{19} - 810 x^{18} - 4452 x^{17} + 16362 x^{16} + 27510 x^{15} - 149325 x^{14} - 80365 x^{13} + 783995 x^{12} + 42265 x^{11} - 2559710 x^{10} + 447060 x^{9} + 5251710 x^{8} - 1715814 x^{7} - 6547836 x^{6} + 4250280 x^{5} + 4685800 x^{4} - 7571000 x^{3} - 3152200 x^{2} + 6276200 x + 3414000 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-645700815000000000000000000000000000000000000=-\,2^{36}\cdot 3^{17}\cdot 5^{37}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $108.85$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{3} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{2}$, $\frac{1}{6} a^{8} - \frac{1}{3} a^{5} - \frac{1}{6} a^{4} + \frac{1}{3} a$, $\frac{1}{18} a^{9} + \frac{1}{9} a^{7} + \frac{1}{9} a^{6} - \frac{1}{2} a^{5} - \frac{1}{9} a^{4} + \frac{2}{9} a^{3} - \frac{2}{9} a - \frac{1}{3}$, $\frac{1}{18} a^{10} - \frac{1}{18} a^{8} + \frac{1}{9} a^{7} - \frac{1}{6} a^{6} + \frac{2}{9} a^{5} + \frac{1}{18} a^{4} + \frac{1}{3} a^{3} - \frac{2}{9} a^{2}$, $\frac{1}{18} a^{11} - \frac{1}{18} a^{8} - \frac{1}{18} a^{7} - \frac{1}{9} a^{5} - \frac{5}{18} a^{4} - \frac{1}{3} a^{3} - \frac{2}{9} a - \frac{1}{3}$, $\frac{1}{54} a^{12} - \frac{1}{54} a^{10} + \frac{1}{18} a^{8} + \frac{1}{9} a^{7} - \frac{1}{6} a^{6} + \frac{4}{9} a^{5} + \frac{1}{9} a^{4} - \frac{7}{27} a^{3} - \frac{1}{9} a^{2} + \frac{13}{27} a - \frac{1}{9}$, $\frac{1}{54} a^{13} - \frac{1}{54} a^{11} - \frac{1}{18} a^{8} + \frac{1}{18} a^{7} - \frac{7}{18} a^{5} - \frac{17}{54} a^{4} + \frac{1}{3} a^{3} + \frac{4}{27} a^{2} + \frac{1}{9} a + \frac{1}{3}$, $\frac{1}{108} a^{14} - \frac{1}{108} a^{13} - \frac{1}{108} a^{12} + \frac{1}{108} a^{11} - \frac{1}{36} a^{10} - \frac{1}{36} a^{9} - \frac{1}{12} a^{8} - \frac{1}{12} a^{7} - \frac{1}{9} a^{6} - \frac{13}{54} a^{5} - \frac{1}{27} a^{4} + \frac{13}{54} a^{3} - \frac{11}{27} a^{2} - \frac{2}{9} a + \frac{1}{3}$, $\frac{1}{324} a^{15} + \frac{1}{162} a^{13} - \frac{1}{162} a^{12} + \frac{2}{81} a^{10} - \frac{1}{18} a^{8} + \frac{7}{108} a^{7} - \frac{8}{81} a^{6} + \frac{7}{18} a^{5} - \frac{34}{81} a^{4} - \frac{79}{162} a^{3} + \frac{4}{9} a^{2} + \frac{23}{81} a + \frac{10}{27}$, $\frac{1}{1620} a^{16} + \frac{1}{810} a^{15} - \frac{7}{1620} a^{14} - \frac{1}{1620} a^{13} + \frac{1}{324} a^{12} + \frac{29}{1620} a^{11} + \frac{43}{1620} a^{10} + \frac{1}{60} a^{9} - \frac{2}{135} a^{8} - \frac{7}{324} a^{7} - \frac{113}{810} a^{6} + \frac{182}{405} a^{5} - \frac{52}{405} a^{4} + \frac{103}{810} a^{3} + \frac{7}{81} a^{2} + \frac{26}{81} a + \frac{13}{27}$, $\frac{1}{1620} a^{17} - \frac{1}{1620} a^{15} - \frac{1}{810} a^{14} + \frac{1}{135} a^{13} + \frac{7}{810} a^{12} - \frac{2}{135} a^{10} - \frac{11}{540} a^{9} - \frac{61}{810} a^{8} - \frac{1}{20} a^{7} + \frac{23}{162} a^{6} + \frac{199}{405} a^{5} - \frac{44}{135} a^{4} + \frac{229}{810} a^{3} - \frac{13}{27} a^{2} - \frac{4}{27} a + \frac{1}{9}$, $\frac{1}{4860} a^{18} - \frac{1}{4860} a^{16} - \frac{7}{4860} a^{15} + \frac{1}{405} a^{14} + \frac{1}{1215} a^{13} + \frac{1}{486} a^{12} + \frac{11}{810} a^{11} + \frac{17}{4860} a^{10} - \frac{8}{1215} a^{9} + \frac{11}{540} a^{8} - \frac{137}{972} a^{7} - \frac{377}{2430} a^{6} + \frac{31}{405} a^{5} - \frac{188}{1215} a^{4} - \frac{125}{486} a^{3} - \frac{31}{81} a^{2} + \frac{58}{243} a - \frac{1}{81}$, $\frac{1}{4860} a^{19} - \frac{1}{4860} a^{17} - \frac{1}{4860} a^{16} - \frac{1}{810} a^{15} + \frac{7}{4860} a^{14} - \frac{11}{4860} a^{13} + \frac{7}{1620} a^{12} - \frac{31}{1215} a^{11} - \frac{59}{4860} a^{10} + \frac{7}{270} a^{9} - \frac{77}{2430} a^{8} - \frac{379}{4860} a^{7} + \frac{41}{810} a^{6} + \frac{409}{1215} a^{5} + \frac{373}{1215} a^{4} + \frac{11}{810} a^{3} + \frac{10}{243} a^{2} + \frac{2}{81} a + \frac{1}{3}$, $\frac{1}{27927996514781400} a^{20} - \frac{1}{2792799651478140} a^{19} + \frac{1528429567}{206874048257640} a^{18} - \frac{30950698727}{465466608579690} a^{17} + \frac{25731423893}{93093321715938} a^{16} - \frac{1638538922981}{2327333042898450} a^{15} + \frac{534309285941}{232733304289845} a^{14} - \frac{2800577247761}{310311072386460} a^{13} + \frac{14209259991571}{1861866434318760} a^{12} + \frac{4942636011361}{1396399825739070} a^{11} - \frac{61074275845723}{5585599302956280} a^{10} - \frac{5072334080651}{930933217159380} a^{9} - \frac{76320597689299}{930933217159380} a^{8} - \frac{58211269508413}{930933217159380} a^{7} + \frac{133971348363283}{930933217159380} a^{6} + \frac{1059544582052783}{2327333042898450} a^{5} + \frac{31747535561671}{155155536193230} a^{4} - \frac{209825448474017}{465466608579690} a^{3} + \frac{46174127365031}{139639982573907} a^{2} + \frac{66087502464439}{139639982573907} a + \frac{4124290434719}{46546660857969}$, $\frac{1}{3722606439444757150200} a^{21} + \frac{617}{34468578143007010650} a^{20} - \frac{11259456613009483}{148904257577790286008} a^{19} - \frac{12533365405826977}{124086881314825238340} a^{18} + \frac{32806966244714827}{124086881314825238340} a^{17} + \frac{9061108218674869}{51702867214510515975} a^{16} + \frac{66662004884330689}{51702867214510515975} a^{15} - \frac{94157287444920382}{31021720328706309585} a^{14} - \frac{656038263967499519}{248173762629650476680} a^{13} - \frac{651050752131139273}{93065160986118928755} a^{12} + \frac{5919113459264411561}{248173762629650476680} a^{11} - \frac{2413229774944074377}{372260643944475715020} a^{10} - \frac{93309201787097741}{4595810419067601420} a^{9} - \frac{416178832324607083}{62043440657412619170} a^{8} - \frac{201827861097671438}{10340573442902103195} a^{7} - \frac{960265684351599532}{51702867214510515975} a^{6} - \frac{12245165252740200896}{155108601643531547925} a^{5} + \frac{12408903264425442302}{31021720328706309585} a^{4} + \frac{2857160690432933911}{37226064394447571502} a^{3} + \frac{2582224629676609724}{6204344065741261917} a^{2} - \frac{2828450391313952981}{18613032197223785751} a + \frac{778164436516686242}{6204344065741261917}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 46335294924500000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 16220160 |
| The 104 conjugacy class representatives for t22n44 are not computed |
| Character table for t22n44 is not computed |
Intermediate fields
| 11.3.6561000000000000000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | $22$ | $22$ | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | $16{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 2.4.8.7 | $x^{4} + 4 x^{2} + 4 x + 2$ | $4$ | $1$ | $8$ | $S_4$ | $[8/3, 8/3]_{3}^{2}$ | |
| 2.4.8.7 | $x^{4} + 4 x^{2} + 4 x + 2$ | $4$ | $1$ | $8$ | $S_4$ | $[8/3, 8/3]_{3}^{2}$ | |
| 2.6.10.4 | $x^{6} + 2 x^{5} + 2 x^{4} + 6$ | $6$ | $1$ | $10$ | $S_4$ | $[8/3, 8/3]_{3}^{2}$ | |
| 2.6.10.4 | $x^{6} + 2 x^{5} + 2 x^{4} + 6$ | $6$ | $1$ | $10$ | $S_4$ | $[8/3, 8/3]_{3}^{2}$ | |
| 3 | Data not computed | ||||||
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 5.5.9.4 | $x^{5} + 30$ | $5$ | $1$ | $9$ | $F_5$ | $[9/4]_{4}$ | |
| 5.5.9.4 | $x^{5} + 30$ | $5$ | $1$ | $9$ | $F_5$ | $[9/4]_{4}$ | |
| 5.10.19.16 | $x^{10} + 85$ | $10$ | $1$ | $19$ | $F_{5}\times C_2$ | $[9/4]_{4}^{2}$ | |