Normalized defining polynomial
\( x^{22} + 35 x^{20} + 145 x^{18} - 6780 x^{16} - 104715 x^{14} - 644565 x^{12} - 2013750 x^{10} - 3324525 x^{8} - 2834100 x^{6} - 1163300 x^{4} - 180475 x^{2} + 400 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-62584688015026276997133031640625000000000000=-\,2^{12}\cdot 3^{20}\cdot 5^{20}\cdot 11^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $97.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{5} a^{11}$, $\frac{1}{15} a^{12} + \frac{1}{3} a^{6} - \frac{1}{3}$, $\frac{1}{15} a^{13} + \frac{1}{3} a^{7} - \frac{1}{3} a$, $\frac{1}{15} a^{14} + \frac{1}{3} a^{8} - \frac{1}{3} a^{2}$, $\frac{1}{15} a^{15} + \frac{1}{3} a^{9} - \frac{1}{3} a^{3}$, $\frac{1}{30} a^{16} - \frac{1}{30} a^{14} - \frac{1}{30} a^{13} - \frac{1}{30} a^{12} + \frac{1}{6} a^{10} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{6} a^{6} - \frac{1}{2} a^{5} + \frac{1}{3} a^{4} - \frac{1}{2} a^{3} - \frac{1}{3} a^{2} + \frac{1}{6} a - \frac{1}{3}$, $\frac{1}{30} a^{17} - \frac{1}{30} a^{15} - \frac{1}{30} a^{14} - \frac{1}{30} a^{13} - \frac{1}{30} a^{11} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{6} a^{7} - \frac{1}{2} a^{6} + \frac{1}{3} a^{5} - \frac{1}{2} a^{4} - \frac{1}{3} a^{3} + \frac{1}{6} a^{2} - \frac{1}{3} a$, $\frac{1}{30} a^{18} - \frac{1}{30} a^{15} - \frac{1}{30} a^{13} - \frac{1}{2} a^{10} + \frac{1}{3} a^{9} - \frac{1}{2} a^{8} - \frac{1}{6} a^{7} - \frac{1}{2} a^{6} - \frac{1}{3} a^{3} + \frac{1}{6} a + \frac{1}{3}$, $\frac{1}{30} a^{19} - \frac{1}{30} a^{13} - \frac{1}{30} a^{12} - \frac{1}{10} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{6} a^{7} - \frac{1}{6} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{3}$, $\frac{1}{184577451375899970264990} a^{20} + \frac{60230404138091838487}{18457745137589997026499} a^{18} - \frac{162788296218728493007}{30762908562649995044165} a^{16} - \frac{1832297066452495152757}{184577451375899970264990} a^{14} - \frac{1}{30} a^{13} - \frac{95009410659208872833}{36915490275179994052998} a^{12} - \frac{1}{10} a^{11} - \frac{4227288729763573644543}{12305163425059998017666} a^{10} - \frac{1}{2} a^{9} + \frac{11976831338222090706017}{36915490275179994052998} a^{8} - \frac{1}{6} a^{7} - \frac{14471043485459444002171}{36915490275179994052998} a^{6} - \frac{5152683025293983736805}{12305163425059998017666} a^{4} - \frac{1}{2} a^{3} + \frac{5940924936448235405211}{12305163425059998017666} a^{2} - \frac{1}{3} a + \frac{2513137061865093024773}{6152581712529999008833}$, $\frac{1}{369154902751799940529980} a^{21} - \frac{1850092557049693541321}{123051634250599980176660} a^{19} + \frac{5175851935217628050791}{369154902751799940529980} a^{17} - \frac{798487877898249416159}{36915490275179994052998} a^{15} - \frac{1}{30} a^{14} + \frac{11830116371763953653501}{369154902751799940529980} a^{13} - \frac{1}{30} a^{12} - \frac{14188677246213612597481}{369154902751799940529980} a^{11} - \frac{1}{2} a^{10} + \frac{1456062406423022924296}{18457745137589997026499} a^{9} - \frac{1}{6} a^{8} - \frac{2165880060399445984505}{73830980550359988105996} a^{7} + \frac{1}{3} a^{6} + \frac{7652429743384021916875}{36915490275179994052998} a^{5} - \frac{1}{2} a^{4} + \frac{11987678260937352612233}{36915490275179994052998} a^{3} - \frac{1}{3} a^{2} - \frac{27989249616519434913193}{73830980550359988105996} a - \frac{1}{3}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 60670586564600 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 112640 |
| The 80 conjugacy class representatives for t22n36 are not computed |
| Character table for t22n36 is not computed |
Intermediate fields
| 11.11.123610132462587890625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.10.10.5 | $x^{10} - 9 x^{8} + 50 x^{6} - 50 x^{4} + 45 x^{2} - 5$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2]^{10}$ | |
| 3 | Data not computed | ||||||
| $5$ | 5.11.10.1 | $x^{11} - 5$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ |
| 5.11.10.1 | $x^{11} - 5$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ | |
| $11$ | 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |