Normalized defining polynomial
\( x^{22} + 13 x^{20} - 636 x^{18} - 14672 x^{16} - 99474 x^{14} - 107348 x^{12} + 1163186 x^{10} + 3657772 x^{8} + 4010549 x^{6} + 1905711 x^{4} + 380936 x^{2} + 26569 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-4129233136056857981979443884256982828952059904=-\,2^{22}\cdot 74843^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $118.43$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 74843$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{394154183604649885445995802379189} a^{20} + \frac{136151760352816459615642537760006}{394154183604649885445995802379189} a^{18} + \frac{119715834622394085179589735457562}{394154183604649885445995802379189} a^{16} - \frac{43760762583085777705258541629687}{131384727868216628481998600793063} a^{14} - \frac{18974129731811503517540985315110}{43794909289405542827332866931021} a^{12} - \frac{194618466174945428934303358785515}{394154183604649885445995802379189} a^{10} - \frac{29946357803012357095586196071780}{131384727868216628481998600793063} a^{8} + \frac{74284607606950117057913050751050}{394154183604649885445995802379189} a^{6} - \frac{19431373675982062886586721583287}{43794909289405542827332866931021} a^{4} + \frac{48885134735379539182786642377992}{131384727868216628481998600793063} a^{2} - \frac{55848603630366878262648597502021}{394154183604649885445995802379189}$, $\frac{1}{64247131927557931327697315787807807} a^{21} - \frac{8929394462554130905642260916961341}{64247131927557931327697315787807807} a^{19} - \frac{14858143142354301561768250754951620}{64247131927557931327697315787807807} a^{17} - \frac{4116687326497801260647215166214640}{21415710642519310442565771929269269} a^{15} - \frac{1113846861966950074200862658590635}{7138570214173103480855257309756423} a^{13} + \frac{199535717429704456511692443593674}{64247131927557931327697315787807807} a^{11} - \frac{7913030029896010066015502243655560}{21415710642519310442565771929269269} a^{9} - \frac{29487279162741791291391772127688125}{64247131927557931327697315787807807} a^{7} - \frac{369790647991226405505249657031455}{7138570214173103480855257309756423} a^{5} + \frac{9245816085510543532922688697892402}{21415710642519310442565771929269269} a^{3} - \frac{2026619521653616305492627609397966}{64247131927557931327697315787807807} a$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 340263779380000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1351680 |
| The 112 conjugacy class representatives for t22n42 are not computed |
| Character table for t22n42 is not computed |
Intermediate fields
| 11.11.31376518243389673201.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }$ | $22$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 74843 | Data not computed | ||||||