Normalized defining polynomial
\( x^{22} + 304 x^{20} + 36459 x^{18} + 2066928 x^{16} + 40935192 x^{14} - 1320559944 x^{12} - 86702793408 x^{10} - 1392387544608 x^{8} + 9697659463557 x^{6} + 538828326720056 x^{4} + 5159145077989967 x^{2} + 10287371329244976 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-38041046614734606844466182382827953894774429871771088765931049023543756062067815864066521884753399513448710144=-\,2^{70}\cdot 3^{21}\cdot 337^{8}\cdot 2707\cdot 310501^{8}\cdot 79172602891\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $95{,}701.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 337, 2707, 310501, 79172602891$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{2} a^{17} - \frac{1}{2} a$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{19} - \frac{1}{4} a^{17} + \frac{1}{4} a^{3} - \frac{1}{4} a$, $\frac{1}{57887320607168480035725746532474501690526662399435613406516} a^{20} - \frac{2950442336895763005424408194123522436283571976756718491005}{57887320607168480035725746532474501690526662399435613406516} a^{18} + \frac{6687768018906776540507452655344280727311499347757220193732}{14471830151792120008931436633118625422631665599858903351629} a^{16} + \frac{259348720412270225378040512031951909393001302543563854899}{14471830151792120008931436633118625422631665599858903351629} a^{14} + \frac{4926708575230916258963405970902161355561452742060275632185}{14471830151792120008931436633118625422631665599858903351629} a^{12} + \frac{1707406206816729396464984654912807160423024357417047705056}{14471830151792120008931436633118625422631665599858903351629} a^{10} + \frac{236020680242715256632000724604190626289830189876792789884}{14471830151792120008931436633118625422631665599858903351629} a^{8} - \frac{636886923424700149398166879481462298513843233990211525355}{1315620922890192728084676057556238674784696872714445759239} a^{6} + \frac{1275122432515599557092138488238814797037673329027135720201}{57887320607168480035725746532474501690526662399435613406516} a^{4} - \frac{43919234986384296921281479927394133804962358347060052409}{57887320607168480035725746532474501690526662399435613406516} a^{2} + \frac{102919139453553653244575791761816156696606812119844028859}{14471830151792120008931436633118625422631665599858903351629}$, $\frac{1}{57887320607168480035725746532474501690526662399435613406516} a^{21} - \frac{2950442336895763005424408194123522436283571976756718491005}{57887320607168480035725746532474501690526662399435613406516} a^{19} - \frac{1096294113978566927916531322430063968008666904344462964165}{28943660303584240017862873266237250845263331199717806703258} a^{17} + \frac{259348720412270225378040512031951909393001302543563854899}{14471830151792120008931436633118625422631665599858903351629} a^{15} + \frac{4926708575230916258963405970902161355561452742060275632185}{14471830151792120008931436633118625422631665599858903351629} a^{13} + \frac{1707406206816729396464984654912807160423024357417047705056}{14471830151792120008931436633118625422631665599858903351629} a^{11} + \frac{236020680242715256632000724604190626289830189876792789884}{14471830151792120008931436633118625422631665599858903351629} a^{9} - \frac{636886923424700149398166879481462298513843233990211525355}{1315620922890192728084676057556238674784696872714445759239} a^{7} + \frac{1275122432515599557092138488238814797037673329027135720201}{57887320607168480035725746532474501690526662399435613406516} a^{5} - \frac{43919234986384296921281479927394133804962358347060052409}{57887320607168480035725746532474501690526662399435613406516} a^{3} - \frac{14265991872885012702442285049594993109238451975619215293911}{28943660303584240017862873266237250845263331199717806703258} a$
Class group and class number
Not computed
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 16220160 |
| The 104 conjugacy class representatives for t22n44 are not computed |
| Character table for t22n44 is not computed |
Intermediate fields
| 11.11.118769262421915560193703211428553337469927424.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $16{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | $22$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | $16{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | $16{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.9.10.1 | $x^{9} + 3 x^{2} + 3$ | $9$ | $1$ | $10$ | $C_3^2:Q_8$ | $[5/4, 5/4]_{4}^{2}$ | |
| 3.9.10.1 | $x^{9} + 3 x^{2} + 3$ | $9$ | $1$ | $10$ | $C_3^2:Q_8$ | $[5/4, 5/4]_{4}^{2}$ | |
| 337 | Data not computed | ||||||
| 2707 | Data not computed | ||||||
| 310501 | Data not computed | ||||||
| 79172602891 | Data not computed | ||||||