Normalized defining polynomial
\( x^{22} - 2 x^{21} + 3 x^{20} - 2 x^{19} - 3 x^{18} + 6 x^{17} - 10 x^{16} + 6 x^{15} + 2 x^{14} - 6 x^{13} + 13 x^{12} - 4 x^{11} + 4 x^{9} - 8 x^{8} - 2 x^{7} - x^{6} - 4 x^{5} + 2 x^{4} + 2 x^{3} + x^{2} + 2 x - 1 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-31964561289410824381582196867072=-\,2^{33}\cdot 235475711\cdot 15802753811681\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.04$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 235475711, 15802753811681$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{23} a^{21} + \frac{1}{23} a^{20} + \frac{6}{23} a^{19} - \frac{7}{23} a^{18} - \frac{1}{23} a^{17} + \frac{3}{23} a^{16} - \frac{1}{23} a^{15} + \frac{3}{23} a^{14} + \frac{11}{23} a^{13} + \frac{4}{23} a^{12} + \frac{2}{23} a^{11} + \frac{2}{23} a^{10} + \frac{6}{23} a^{9} - \frac{1}{23} a^{8} - \frac{11}{23} a^{7} + \frac{11}{23} a^{6} + \frac{9}{23} a^{5} + \frac{2}{23} a^{3} + \frac{8}{23} a^{2} + \frac{2}{23} a + \frac{8}{23}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12970191.905 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 3186701844480000 |
| The 1652 conjugacy class representatives for t22n57 are not computed |
| Character table for t22n57 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 44 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ | $22$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | $16{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.10.0.1}{10} }$ | ${\href{/LocalNumberField/17.11.0.1}{11} }{,}\,{\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | $16{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }$ | ${\href{/LocalNumberField/23.11.0.1}{11} }{,}\,{\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{3}$ | $22$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.10.0.1}{10} }$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 235475711 | Data not computed | ||||||
| 15802753811681 | Data not computed | ||||||